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Abstract. This article examines the poset of noncrossing partitions of a cir-

cle, with a particular focus on the partitions which are invariant under the
standard degree-d covering map. These form a subposet with close connec-

tions to the dual braid complex, a classifying space for the d-strand braid

group introduced by Tom Brady in 2001. We use this connection to prove
that the dual braid complex is homeomorphic to the space of monic degree-d

polynomials with distinct, centered roots and critical values on the unit circle.

In particular, this identifies the dual braid complex as a spine of the classical
polynomial classifying space for the braid groups. Along the way we introduce

new algebraic objects which describe the points and cells in both the order

complexes of generalized noncrossing partitions and the interval complexes for
arbitrary dual Artin groups.

Introduction

First, let NC(S) denote the set of all partitions of the unit circle S for which
the convex hulls of the blocks are pairwise disjoint. This set is partially ordered by
refinement, and we refer to its elements as continuous noncrossing partitions. For
example, a geodesic lamination of a hyperbolic surface lifts to a lamination of the
hyperbolic plane, and this induces a noncrossing partition of the boundary at infin-
ity. To give another example, the preimage of the coordinate axes under a degree-d
complex polynomial will intersect a sufficiently large circle in 4d points, and this will
determine a noncrossing partition of S in which each block has size divisible by 4
[MSS07]. In ongoing work of the authors, we provide similar constructions connect-
ing continuous noncrossing partitions to complex polynomials [DM22, DMa]. We
are particularly interested in the subposet NCd(S) of degree-d-invariant partitions
i.e. those which are compatible with the standard degree-d covering map z 7→ zd

for the unit circle – see Figure 1.
Our first main theorem provides an algebraic interpretation for NCd(S) using a

far more general construction. Let G be a group and suppose that X is a generating
set for G which is closed under conjugation. For each g ∈ G, let [1, g] be the
interval poset formed by the geodesics between the identity and g in the right
Cayley graph of G with respect to X. Essentially, [1, g] consists of all elements of G
which appear in a minimum-length factorization of g. In this article, we introduce
the graded poset F(g,S) of weighted circular factorizations of elements in [1, g].
Each factorization is defined by a map S → [1, g] with certain properties and the
set of all such factorizations inherits a partial order from [1, g]. When G is the
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z 7→ z12

Figure 1. A degree-12-invariant noncrossing partition of the circle

symmetric group Symd, X is the set of all transpositions in Symd, and δ is the d-
cycle (1 2 · · · d), we obtain the poset of degree-d-invariant continuous noncrossing
partitions.

Theorem A (Theorem 6.11). NCd(S) is isomorphic to F(δ,S).

Returning to the general setting, we view F(g,S) as a “topological graded poset”
in the sense that it is a graded poset such that the elements in each rank form a
topological space. This type of object is best described by an example. Fix a
positive integer n and consider the set of all multisets (i.e. sets with repetition
allowed) of at most n points in the unit interval I. This set is a graded poset under
inclusion, and the elements of rank k are the multisets which have exactly k points
(including repetition). Moreover, the set of elements with rank k can naturally be
identified with the cell structure of a k-dimensional simplex, so this graded poset
comes with a topology in each rank. We can also describe the elements of each rank
combinatorially by noting that the Boolean lattice of height k is the face poset for
the k-dimensional simplex, but we must take care to not confuse the two partial
orders. To get a sense of the structure, see Figure 12 for a simplified diagram.

In general, the topology for F(g,S) is closely related to a useful cell complex
associated to [1, g]. The order complex of [1, g] is a ∆-complex in which each
edge inherits a label from the right Cayley graph of G with respect to X; the
interval complex Kg is the single-vertex ∆-complex obtained by identifying faces
with matching labels on their 1-skeletons. When G is the symmetric group Symd,
X is the set of all transpositions in Symd, and δ is the d-cycle (1 2 · · · d), the
interval complex Kδ is known as the dual braid complex. This space was introduced
and shown to be a classifying space for the d-strand braid group by Brady [Bra01],
then given a piecewise-Euclidean metric by Brady and the second author [BM10].

Theorem B (Theorem 5.6). The maximal elements of the topological graded poset
F(g,S) form a subspace isometric to Kg, the interval complex for [1, g].

As a consequence of our first two theorems, we see that the maximal elements
of NCd(S) form a subspace which is isometric to the dual braid complex Kδ.

We also investigate some of the combinatorial structure for F(g,S). It follows
quickly from the definitions that if u is a weighted circular factorization of h ∈
[1, g], then the lower set ↓(u) (i.e. the poset of all elements below u in the partial
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order on F(g,S)) is isomorphic to a product of intervals [1, x1] × · · · × [1, xk] for
some x1, . . . , xk ∈ [1, g]. In particular, this means that F(g,S) is a poset with
uncountably many elements in which each each lower set is finite. Our third main
theorem treats the more complicated case of upper sets in F(δ,S).

Theorem C (Corollary 5.12). Let u be a weighted circular factorization of h ∈
[1, g]. Then the upper set ↑(u) in F(g,S) is isomorphic to F(h−1g,S). Conse-
quently, the maximal elements of ↑(u) form a subspace which is isometric to the
interval complex Kh−1g.

The theorems above allow us to tackle the following natural question: what is
the relationship between the dual braid complex and other classifying spaces for the
braid group? The quintessential example comes from arrangements of hyperplanes.
Let Ad denote the complex braid arrangement, i.e. the union of all hyperplanes in
Cd described by equations of the form zi = zj where i ̸= j. The complement Cd−Ad

is a connected 2d-manifold which admits a free action of the symmetric group Symd
by permuting coordinates, and the resulting quotient Yd = (Cd − Ad)/Symd was
proven to be a classifying space for the d-strand braid group by Fox and Neuwirth
in 1962 [FN62].

Since classifying spaces are unique up to homotopy equivalence, we know for
abstract reasons that Yd is homotopy equivalent to the dual braid complex. Our
fourth result provides a more concrete connection between the two.

Theorem D (Corollary 6.13). The dual braid complex is a spine for Yd. That is,
there is a subspace of Yd which is homeomorphic to the dual braid complex and a
deformation retraction from Yd to this subspace.

The main ingredient in this theorem is a result in complex dynamics which was
stated by W. Thurston in an unpublished manuscript, then posthumously com-
pleted by Baik, Gao, Hubbard, Lei, Lindsey, and D. Thurston [TBY+20]. As a
consequence of this result, we identify Yd with the space of monic complex poly-
nomials with d distinct roots centered at the origin, then find that the dual braid
complex is homeomorphic to the subspace of polynomials with critical values on the
unit circle. This connection was pointed out to us by Daan Krammer in 2017; in
our upcoming article [DMa], we provide another proof of this fact through a more
general construction. In particular, we describe a piecewise-Euclidean metric for
Yd and a polysimplicial cell structure for its completion such that the subspace of
polynomials with critical values on the unit circle inherits a metric cell structure
which is isometric to the dual braid complex.

We believe that the results of Theorem D can be extended to a broader class of
examples. For example, let W be a finite Coxeter group with S its set of simple
reflections, and let X be the set of all conjugates of S. Letting n = |S|, we know
thatW acts on Cn by isometries, where each element of X acts as a reflection. If we
define AW to be the union of all hyperplanes fixed by elements of X, then the 2n-
manifold YW = (Cn −AW )/W is a classifying space for W [Bri73, Del72]. Finally,
δ ∈W is a Coxeter element if it can be written as the product of all elements in S
in some order, with each element appearing exactly once.

Conjecture 1. Let δ be a Coxeter element for the Coxeter group W . Then the
interval complex Kδ is a spine for YW .

The article is structured as follows. In Sections 1 and 2, we provide background
information on posets and the dual braid complex. Section 3 introduces posets of
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factorizations and examines their combinatorial structure, while Section 4 intro-
duces weighted analogues of these factorizations and examines their topology and
geometry. In Section 5, we introduce the topological graded posets of weighted
factorizations and prove Theorems B and C. Finally, we define the poset of degree-
d-invariant partitions of the circle in Section 6 and prove Theorems A and D.

1. Posets and Orthoschemes

In this section we recall some background information for partially ordered sets
and a special kind of metric simplex known as an orthoscheme. See [Sta12, Ch. 3]
for a standard reference on posets and [Hat02, BM10] for background on simplices.

A partially ordered set P is a lattice if each pair of elements has a unique meet
and a unique join. If P has unique meets (but not necessarily unique joins), we
say that P is a meet-semilattice. A chain in P is a collection of distinct elements
x0, . . . , xk ∈ P such that x0 ≤ · · · ≤ xk, and a chain is maximal if it is not properly
contained in another chain. We say that P is graded if there is a rank function
rk : P → N such that for all x, y ∈ P , we have rk(x) < rk(y) whenever x < y and
rk(x)+1 = rk(y) whenever x < y and there is no z ∈ P with x < z < y. The height
of a graded poset is the length of a maximal chain. Given two elements x, y ∈ P ,
the set of all z ∈ P with x ≤ z ≤ y is the interval [x, y]. The set of all elements
y ∈ P with x ≤ y is called the upper set of x and is denoted ↑(x). Similarly, the
set of all z ∈ P with z ≤ x is the lower set of x, denoted ↓(x).

Example 1.1 (Boolean lattice). The Boolean lattice Bool(n) consists of all subsets
for the n-element set {1, . . . , n}, partially ordered under inclusion, and it is indeed
a lattice: given A,B ∈ Bool(n), the unique meet is A ∩ B and the unique join is
A ∪ B. This poset is also graded, with rank function rk: Bool(n) → N given by
rk(A) = |A| for each A ⊆ {1, . . . , n}. Fixing an element A ∈ Bool(n) with rank k,
the lower set ↓(A) is isomorphic to the smaller Boolean lattice Bool(k), whereas
the upper set ↑(A) is isomorphic to Bool(n− k).

There is a close connection between partially ordered sets and simplicial com-
plexes. Each cell complex has an associated face poset and each poset has an
associated order complex. We will make use of both operations, and we begin by
describing the first.

Definition 1.2 (Face posets). Let X be a simplicial complex. The face poset
P (X) is defined to be the graded poset of all faces of X (including the empty face),
ordered by inclusion.

For example, each face of an n-dimensional simplex can be specified precisely
by a subset of the n + 1 vertices, and the relation of incidence between two faces
corresponds exactly to inclusion between the two subsets. In other words, the face
poset for the n-simplex is isomorphic to the Boolean lattice Bool(n+ 1).

Definition 1.3 (Order complexes). Let P be a graded poset. The order complex
∆(P ) is the ∆-complex with vertex set P and an ordered k-simplex on the vertices
x0, . . . , xk whenever x0 < · · · < xk in P . See Hatcher’s book for background on
∆-complexes [Hat02].

The order complex ofBool(n), for example, is homeomorphic to the cell complex
obtained by subdividing the cube [0, 1]n ⊂ Rn into n! top-dimensional simplices via
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the
(
n
2

)
hyperplanes with equations xi = xj where i ̸= j. In fact, we can promote

this homeomorphism to an isometry with an appropriate choice of metric for the
order complex.

Definition 1.4 (Orthoschemes). The simplex spanned by points p0, . . . ,pn in Rn
is called an n-dimensional orthoscheme if the set of n vectors {pi − pi−1 | i ∈ [n]}
is orthogonal. If those vectors are orthonormal, then the simplex is a standard n-
dimensional orthoscheme, and it is isometric to the subset of points (x1, . . . , xn) ∈
Rn subject to the inequalities 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1.

For each poset P , we give the order complex ∆(P ) the orthoscheme metric, in
which each maximal simplex is a standard orthoscheme with the order of its vertices
determined by the order of the corresponding maximal chain in P . For more detail
on this use of the orthoscheme metric, see [BM10, Sec. 5-6].

To conclude this section, we give a brief remark on the faces of orthoschemes.

Remark 1.5. Each face of a standard n-dimensional orthoscheme is itself an
orthoscheme, but one which is not necessarily standard. Using the inequalities
0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1 to describe the standard n-dimensional orthoscheme,
each nonempty A = {t0, . . . , tk} in Bool(n + 1) corresponds to the closed k-
dimensional face determined by the equations

xi = 0 if 1 ≤ i ≤ t0;

xi = xi+1 if tj < i < i+ 1 ≤ tj+1 for some j ∈ {0, 1, . . . , k − 1};
xi = 1 if tk < i ≤ n.

In plain language, this face is the set of points such that the first t0 coordinates are
equal to 0, the next t1− t0 coordinates are equal to each other, the following t2− t1
coordinates are equal, and so on until we reach ak coordinates set equal to each
other, concluding with the final n − tk coordinates set equal to 1. Furthermore,
this face is isometric to the set of points (y1, . . . , yk) ∈ Rk determined by the
inequalities 0 ≤ √

a1y1 ≤ √
a2y2 ≤ · · · ≤ √

akyk ≤ 1. Note in particular that two
nonempty subsets {t0, . . . , tk} and {s0, . . . , sk} label isometric k-dimensional faces
if ti − ti−1 = si − si−1 for all i ∈ {1, 2, . . . , k}.

2. Interval Complexes and The Dual Braid Complex

In this section, we review the definition and basic properties of interval complexes
and the dual braid complex. Throughout the rest of the article (unless otherwise
specified), let G be a group and let X be a generating set for G which is closed
under conjugation.

Definition 2.1 (Intervals). For each g ∈ G, let ℓ(g) denote the length of a minimal
factorization of g into elements of X. This induces a partial order on G by declaring
that g ≤ h if ℓ(g)+ℓ(g−1h) = ℓ(h); in other words, g ≤ h if there is a minimal-length
factorization of h into elements of X which has a minimal-length factorization of
g as a left prefix. We denote the interval from the identity element 1 to g in this
poset by [1, g] and observe that the order diagram of [1, g] is the graph obtained by
taking the union of all geodesics from 1 to g in the right Cayley graph of G with
respect to X. Since every geodesic has the same length, this makes the interval
[1, g] into a graded poset with height ℓ(g).
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Figure 2. The interval [1, δ] described in Example 2.3, depicted
as a subgraph of the Cayley graph Cay(Sym3, T )

In this article, we are primarily interested in cases where G is either Z or Symd,
but much of what we discuss will generalize to other settings. In a future article,
we will discuss the case where G is a Coxeter group with standard generating set
S and X is the set of conjugates in S (i.e. reflections) [DMb].

Example 2.2. Let G = Z with generating set X = {1}. Then ℓ(n) = |n| for all
n ∈ Z and the induced partial order is the usual one for Z. The interval [1, n]
consists of a single chain with n elements.

Example 2.3. Let G be the symmetric group Symd and let X = T be the set of
all transpositions. Then for all g ∈ Symd, the length ℓ(g) is called the absolute re-
flection length and the induced partial order is the absolute order on the symmetric
group. If we define δ to be the d-cycle (1 2 · · · d) ∈ Symd, then the interval [1, δ]
is sometimes known as the lattice of noncrossing permutations for reasons which
will be explained in Section 6. The dual presentation for the d-strand braid group
Braidd has as its generating set the nonempty elements of [1, δ], with relations
consisting of all words which arise from closed loops in [1, δ] which are based at the
identity [Bra01, Bes03]. For example, if δ = (1 2 3) ∈ Sym3 and T = {a, b, c} where
a = (1 2), b = (2 3) and c = (1 3), then the interval [1, δ] consists of five elements
(see Figure 2) and the dual presentation for Braid3 is ⟨a, b, c, δ | ab = bc = ca = δ⟩.

The following lemma demonstrates that [1, g] consists of all elements in G which
appear in partial factorizations of g.

Lemma 2.4. If x1, . . . , xn ∈ G with x1 · · ·xn = g and ℓ(x1) + · · · + ℓ(xn) = ℓ(g),
then for any choice of integers 1 ≤ i1 < · · · < ik ≤ n, we have xi1 · · ·xik ∈ [1, g].

Proof. First, we can write g = w0xi1w1 · · ·wk−1xikwk, where w0 = x1 · · ·xi1−1,
wn = xik+1 · · ·xn and wj = xij+1xij+2 · · ·xij+1 for all j ∈ {1, . . . , n − 1}. By
assumption, we can see that

ℓ(g) = ℓ(w0) + ℓ(xi1) + ℓ(w1) + · · · ℓ(wk−1) + ℓ(xik) + ℓ(wk).

If we define zj = xij · · ·xik for each j, then we can rearrange the first product to
obtain

g = xi1 · · ·xik(z
−1
1 w0z1)(z

−1
2 w1z2) · · · (z−1

k wk−1zk)wk.
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By definition, we know that ℓ(xi1 · · ·xik) ≤ ℓ(xi1) + · · · + ℓ(xik), and since the
generating set X is closed under conjugation, we have ℓ(z−1

j wj−1zj) = ℓ(wj−1) for
each j. Combining these with the equation above, we obtain

ℓ(g) = ℓ(xi1 · · ·xik) + ℓ(w0) + · · ·+ ℓ(wn),

from which it follows that xi1 · · ·xik ≤ g. □

Definition 2.5 (Dual braid complex). Let g ∈ G. The interval complex Kg asso-
ciated to the interval [1, g] is the single-vertex ∆-complex obtained by identifying
faces in the order complex ∆([1, g]) as follows: the k-simplices labeled by chains
x0 < · · · < xk and y0 < · · · < yk are identified if and only if x−1

i−1xi = y−1
i−1yi for

all i ∈ {1, . . . , k}. Note that this identification is well-defined by the ordering given
to each simplex. In the special case when G = Symd and X = T as outlined in
Example 2.3, we write δ = (1 2 · · · d) and refer to the interval complex Kδ as the
dual braid complex 1.

Brady introduced the dual braid complex in [Bra01] and showed that it is a
classifying space for the d-strand braid group. Using the orthoscheme metric, it is
conjectured that the dual braid complex is locally CAT(0) [BM10].

Remark 2.6. If h ≤ g, then the order complex ∆([1, h]) is isometric to a subcom-
plex of ∆([1, g]) and, by following the gluing described in Definition 2.5, we can see
that the interval complex Kh is isometric to a subcomplex of Kg. When G = Symd
and X = T , each permutation γ ∈ Symd can be written as a product of disjoint
cycles γ = x1 · · ·xk and the interval [1, γ] is isomorphic to the product of intervals
[1, x1]× · · · × [1, xk], so it follows that the interval complex Kγ is a subcomplex of
Kδ which is isometric to a product of smaller dual braid complexes.

3. Compositions and Factorizations

Our first goal is to develop a convenient way of describing the cells in the order
complex and interval complex. To this end, we define two key posets for each g ∈ G:
Fact(g, I), the poset of weak-ended factorizations of g, and Fact(g,S), the poset
of circular factorizations of g. Throughout this section (unless otherwise specified),
let G be a group with generating set X which is closed under conjugation, and let
the length function ℓ : G→ Z and interval [1, g] be given as in Definition 2.1.

Definition 3.1 (Weak-ended factorizations). Let g ∈ G. A weak-ended factoriza-
tion of g is a row vector x = [x0 · · · xk+1] where x0, . . . , xk+1 are elements of G
such that

(1) xi is nontrivial when i ∈ {1, . . . , k};
(2) ℓ(x0) + ℓ(x1) + · · ·+ ℓ(xk) + ℓ(xk+1) = ℓ(g);
(3) x0x1 · · ·xkxk+1 = g.

For each i ∈ {0, 1, . . . , k}, a weak-ended factorization

[x0 · · · xi−1 xi xi+1 xi+2 · · · xk+1]

of length k + 2 can be merged at position i to obtain the weak-ended factorization

[x0 · · · xi−1 (xixi+1) xi+2 · · · xk+1]

1In previous work of the authors, “dual braid complex” referred to the universal cover of the
space described above rather than the quotient. Here, we use the term to refer to the single-vertex

quotient since this space is of greater use in the present article.
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[0 1 1 0]

[1 1 0] [0 2 0] [0 1 1]

[2 0] [1 1] [0 2]

[2]

Figure 3. The poset Comp(2, I) of weak-ended compositions of 2

of length k+1. Let Fact(g, I) denote the set of all weak-ended factorizations of g,
equipped with the partial order x ≤ y if x can be obtained from y by a sequence of
merges. This partially ordered set is a meet-semilattice with minimal element [g].
Let Fact∗(g, I) denote the subposet of all weak-ended factorizations with length
at least 2.

By Lemma 2.4, we see that the elements of Symd which appear in weak-ended
factorizations of g are precisely those which belong to the interval [1, g]. We also
note that weak-ended factorizations are closely related to the “reduced products”
in [McC] and the “block factorizations” in [Rip12], but with the slight variation
that the first and last entries are permitted to be trivial.

Example 3.2 (Comp(n, I)). In the special case when G = Z and X = {1}, we
refer to the weak-ended factorizations of n ∈ Z as weak-ended compositions, the
set of which is denoted Comp(n, I). Unlike the more general case, Comp(n, I) is a
lattice with maximum element given by the row vector [0 1 · · · 1 0] of length n+2.
See Figure 3 for an example when n = 2.

Example 3.3 (Fact(δ, I)). If G = Sym3 and X = {a, b, c} as in Example 2.3,
then Fact(δ, I) contains 16 elements, illustrated in Figure 4.

Proposition 3.4. Let g ∈ G. Then Fact(g, I) is isomorphic to the poset of chains
for [1, g], ordered by inclusion.

Proof. Let f be the function which sends [g] to the empty chain and, more generally,
the weak-ended factorization [x0 · · · xk+1] to the chain

x0 ≤ x0x1 ≤ x0x1x2 ≤ · · · ≤ x0x1 · · ·xk,

noting that x0x1 · · ·xi ∈ [1, g] for each i. Then f has an inverse which takes
the empty chain to [g] and, more generally, the chain y0 < y1 < · · · < yk to
the weak-ended factorization [y0 y−1

0 y1 · · · y−1
k−1yk y−1

k g]. Moreover, merging
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[1 a b 1] [1 c a 1] [1 b c 1]

[a b 1] [c a 1] [b c 1] [1 δ 1] [1 a b] [1 c a] [1 b c]

[δ 1] [a b] [c a] [b c] [1 δ]

[δ]

Figure 4. The poset Fact(δ, I) of weak-ended factorizations of
the element δ ∈ Sym3 with respect to the generating set of trans-
positions {a, b, c} — see Example 3.3.

factorizations in Fact(g, I) corresponds exactly to taking subchains in [1, g], so
f is an order-preserving bijection with order-preserving inverse and thus the two
posets are isomorphic. □

Corollary 3.5. Comp(n, I) is isomorphic to the Boolean lattice Bool(n+ 1).

By identifying the ends of a weak-ended factorization, we obtain a new object
which we call a circular factorization.

Definition 3.6 (Circular factorizations). Let g ∈ G. Define an equivalence relation
on Fact(g, I) by declaring x = [x0 x1 · · · xk xk+1] and y = [y0 y1 · · · yk yk+1] to
be equivalent if and only if xi = yi for all i ∈ {1, . . . , k}. We refer to the equivalence
classes as circular factorizations of g, each of which is represented by the unique
element with 1 as its final entry. More concretely, the equivalence class of x is
denoted x = [gxk+1g

−1x0 | x1 · · · xk | 1]. Let Fact(g,S) denote the set of all
circular factorizations under the partial order x ≤ y if x′ ≤ y′ for some x′ ∈ x
and y′ ∈ y, and let Fact∗(g,S) be the subposet with the minimum element [g || 1]
removed. Define the order-preserving surjection q : Fact(g, I) → Fact(g,S) by
sending each weak-ended factorization to the equivalence class which contains it,
i.e. q(x) = x.

Example 3.7 (Comp(n,S)). When G = Z and X = {1}, we denote the set
Fact(g,S) by Comp(n,S) and refer to its elements as circular compositions of
n. When n = 2, for example, the poset Comp(2,S) of circular compositions of 2
has four elements and is isomorphic to Bool(2) — see Figure 5. More generally,
it is important to note that while there is a rank-preserving bijection between
Comp(n,S) and Bool(n), the two are not isomorphic when n > 2 since there are
relations in the former which do not appear in the latter.
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[0 | 1 1 | 0]

[1 | 1 | 0] [0 | 2 | 0]

[2 || 0]

Figure 5. The poset Comp(2,S) of circular compositions of 2

[1 | a b | 1] [1 | c a | 1] [1 | b c | 1]

[1 | δ | 1] [c | a | 1] [a | b | 1] [b | c | 1]

[δ || 1]

Figure 6. The poset Fact(δ,S) of circular factorizations of the
element δ ∈ Sym3 with respect to the generating set of transposi-
tions {a, b, c} — see Example 3.8.

Example 3.8 (Fact(δ,S)). When G = Sym3, X = T = {a, b, c}, and δ = (1 2 3)
as in Example 2.3, the poset Fact(δ,S) has 8 elements — see Figure 6.

We close this section by providing combinatorial connections between the posets
introduced in this section. See Figure 7 for the relevant commutative diagram.

Definition 3.9 (Factorizations to compositions). Let g ∈ G with n = ℓ(g) and
define the function L : Fact(g, I) → Comp(n, I) by sending the factorization x =
[x0 x1 · · · xk xk+1] to the composition L(x) = [ℓ(x0) ℓ(x1) · · · ℓ(xk) ℓ(xk+1)].
Similarly, define L : Fact(g,S) → Comp(n,S) by sending x = [x0 | x1 · · · xk | 1] to
L(x) = [ℓ(x0) | ℓ(x1) · · · ℓ(xk) | 0]. Note that if x′ is obtained from x by performing
a merge in position i, then we know ℓ(xixi+1) = ℓ(xi)+ ℓ(xi+1) by Lemma 2.4, and
this means that L(x′) is obtained from L(x) by merging at position i. By similar
reasoning, we know that if x′ ≤ x, then L(x′) ≤ L(x). Thus L and L are both
order-preserving functions.

Lemma 3.10. Let x ∈ Fact(g, I). Then L restricts to an isomorphism from ↓(x)
to ↓(L(x)).
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Fact(g, I) Comp(n, I)

Fact(g,S) Comp(n,S)

L

q q

L

Figure 7. Our four key posets fit into a commutative diagram.

Proof. As described in Definition 3.9, each element of ↓(x) is obtained from x via
a sequence of merges, and the same merges can be performed on L(x) to obtain an
element of ↓(L(x)). Two different sequences of merges produce the same element
of ↓(x) if and only if the analogous sequence produces the same element of ↓(L(x)),
so L restricts to a bijection and thus an isomorphism. □

Note that Lemma 3.10 does not hold for L, as it is possible to have elements
x ∈ Fact(g,S) such that the restriction of L to ↓(x) yields an order-preserving
surjection, but not an injection. See Figure 6 for an example.

Proposition 3.11. The functions L and L are surjective order-preserving maps
and Lq = qL.

Proof. By Definition 3.9, we know the two maps are order-preserving. Also, if x is
a maximal element of Fact(g, I), then L(x) = [0 1 · · · 1 0], the maximum element
of Comp(n, I). By Lemma 3.10, we know that L restricts to an isomorphism from
↓(x) to ↓(L(x)) = Comp(n, I), so the (unrestricted) map L is surjective. The fact
that Lq = qL follows directly from Definition 3.6 and Example 3.7. Since q and L
are surjective, we know qL and thus Lq are surjective maps, which finally allows us
to conclude that L is surjective. □

Proposition 3.12. The poset Fact(g, I) is simplicial, i.e. each of its intervals is
isomorphic to a Boolean lattice.

Proof. For each x,y ∈ Fact(g, I) with x ≤ y, choose a maximal element z with
[g] ≤ x ≤ y ≤ z. Then the interval [x,y] is contained within the larger interval
[[g], z], which we know by Lemma 3.10 is isomorphic to Comp(n, I), which is itself a
Boolean lattice. Since every interval of a Boolean lattice is isomorphic to a smaller
Boolean lattice, the proof is complete. □

4. Weighted Compositions and Weighted Factorizations

In this section, we introduce a way of labeling points in the order complex and
interval complex. For each g ∈ G, we define WFact(g, I), the space of weighted
weak-ended factorizations of g, and WFact(g,S), the space of weighted circular
factorizations of g. The points in each space are defined as weighted versions of
poset elements from the previous section and can be viewed as decorated multisets
in either I or S.

Definition 4.1 (G-multisets). Let S be a set and let G be a group. We define
a G-multiset on S to be a function x : S → G such that x(s) is the identity in
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[3 0] [2 1]

[1 2]

[0 3]

[2 1 0]

[1 1 1]

[0 1 2]
[0 3 0]

[1 2 0]

[0 2 1]

Figure 8. The space WComp(3, I), with vertices and edges labeled

G for all but finitely many s ∈ S. We denote the set of all G-multisets on S by
Mult(G,S).

We are interested in four cases which arise from two choices: S is either the unit
interval or the circle, and G is either Z or Symd. First, we consider the interval.

Definition 4.2 (WFact(g, I)). Let g ∈ G. For each G-multiset u : I → G, let 0 =
s0 < s1 < · · · < sk < sk+1 = 1 be such that u is nontrivial on the set {s1, . . . , sk}
and trivial on its complement in (0, 1). For each i, let xi = u(si) and define
P (u) = [x0 x1 · · · xk xk+1]; we say that u is a weighted weak-ended factorization of
g if P (u) is a weak-ended factorization of g. Note that P (u) necessarily has length
at least 2. We will often use the convenient shorthand u = 0x0sx1

1 · · · sxk

k 1xk+1

to denote elements of WFact(g, I). Denote the set of all weighted weak-ended
factorizations of g by WFact(g, I) and observe that P is a surjective function from
WFact(g, I) to Fact∗(g, I).

Example 4.3 (WComp(n, I)). When G = Z and X = {1}, we denote the set
WFact(n, I) by WComp(n, I) and refer to its elements as weighted weak-ended
compositions of n. If we consider the action of Symn on the n-cube In by permut-
ing coordinates, then each element s = 0a0sa11 · · · sakk 1ak+1 in WComp(n, I) can be
viewed as a point on the quotient space In/Symn, which is isometric to a stan-
dard n-dimensional orthoscheme. For each a ∈ Comp(n, I), the set of weighted
weak-ended compositions s of n with P (s) = a forms an open face of the stan-
dard orthoscheme which we refer to as a (non-standard) orthoscheme of shape a.
This recovers what we found in Corollary 3.5: Comp∗(n, I) is the face poset for
the standard n-dimensional orthoscheme. Moreover, Remark 1.5 tells us that ele-
ments a = [a0 · · · ak+1] and b = [b0 · · · bk+1] in Comp∗(n, I) label isometric faces of
WComp(n, I) if ai = bi for all i ∈ {1, . . . , k}; see Figure 8.

Using this example, we can pull back the metric on WComp(n, I) to provide a
piecewise-Euclidean metric for WFact(g, I).
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δ 1

c a

a b

b c

1 δ

b 1c

1 ac

1 1δ

1 1a b

Figure 9. The order complex of [1, δ], where δ = ab = bc = ca
in Sym3 as described in Example 2.3. The cells are labeled by
elements of Fact(g, I) and the points are labeled by elements of
WFact(g, I).

Definition 4.4 (Pullback metric). Let g ∈ G with ℓ(g) = n. Abusing notation, we
define the function L : WFact(g, I) → WComp(n, I) by L(u) = ℓ ◦ u and observe
that PL = LP , where the second occurrence of “L” denotes the function from
Fact(g, I) to Comp(n, I) given in Definition 3.9. For each x ∈ Fact(g, I), the
set P−1(x) = {u ∈ WFact(g, I) | P (u) = x} is sent bijectively via L to the set
P−1(L(x)) = {s ∈ WComp(n, I) | P (s) = L(x)}, so we can pull back the metric
and identify P−1(x) with an open orthoscheme of shape L(x). By Lemma 3.10, we
know that the closure of this open orthoscheme is indeed the closed orthoscheme
we would expect, so this endows WFact(g, I) with the structure of a piecewise-
Euclidean ∆-complex with Fact(g, I) as its face poset.

Example 4.5 (WFact(δ, I)). If G = Sym3, T = {a, b, c} and δ = (1 2 3) as in Ex-
ample 2.3, then WFact(δ, I) is a 2-dimensional simplicial complex which consists
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of three right isosceles triangles, all sharing a common hypotenuse. The three trian-
gles, seven edges, and five vertices are labeled by the elements of Fact(δ, I); see Fig-
ures 4 and 9. Finally, note that the function L from WFact(δ, I) to WComp(2, I)
is a branched covering map with branch points on the shared hypotenuse.

Proposition 4.6. The order complex of [1, g] is isometric to WFact(g, I).

Proof. This follows immediately from Proposition 3.4 and Example 4.5. □

Identifying the endpoints of I to produce the circle S yields a “circular” quotient
of WFact(g, I).

Definition 4.7 (WFact(g,S)). The equivalence relation given in Definition 3.6
transforms Fact(g, I) into Fact(g,S), and this determines a quotient of the cell
complex WFact(g, I) by isometrically identifying faces. As described in Defini-
tion 1.4, each simplex in the order complex comes with an ordering of its vertices
which determines the metric, and this information determines the gluing orienta-
tion. We refer to this quotient as the space of weighted circular factorizations of g,
denoted WFact(g,S). Each point u in this space can be viewed as a G-multiset
S → G and uniquely represented as u = 0x0sx1

1 · · · sxk

k 11, where q(u) is the circular
factorization [x0 | x1 · · · xk | 1]. It follows that Fact∗(g,S) is the face poset for
WFact(g,S).

Example 4.8 (WComp(n,S)). When G = Z and X = {1}, we denote the set
WFact(n,S) by WComp(n,S) and refer to its elements as weighted circular com-
positions of n. As discussed in Example 4.3, WComp(n, I) is isometric to a stan-
dard n-dimensional orthoscheme, so WComp(n,S) is obtained by identifying faces
of an orthoscheme according to the map q : Comp(n, I) → Comp(n,S) given in
Definition 3.6. To give another way of viewing this identification, the inequali-
ties x1 ≤ x2 ≤ · · · ≤ xn ≤ x1 + 1 define a topological subspace of Rn called a
column which is isometric to the product of R and an (n−1)-simplex (more specif-

ically, a Coxeter simplex of type Ãn−1 — see [BM10, Section 8] and [DMW20,
Section 8]). The infinite cyclic group generated by the isometry T : Rn → Rn given
by T (x1, x2, . . . , xn) = (x2, . . . , xn, x1 + 1) acts freely on the column with a funda-
mental domain which is isometric to the standard n-dimensional orthoscheme. The
quotient by this action is WComp(n,S).

Example 4.9 (WFact(δ,S)). If G = Sym3, T = {a, b, c} and δ = (1 2 3) as in
Example 4.5, then WFact(δ,S) is obtained from WFact(δ, I) by identifying edges;
see Figure 10.

Proposition 4.10. The interval complex for [1, g] is isometric to WFact(g,S).

Proof. The interval complex for [1, g] is obtained from the order complex by iden-
tifying the faces labeled by chains x0 < · · · < xk and y0 < · · · < yk if and only if
x−1
i−1xi = y−1

i−1yi for all i ∈ {1, . . . , k}. By Proposition 3.4, these faces are labeled
by the weak-ended factorizations

[x0 x−1
0 x1 · · · x−1

k−1xk x−1
k g]

and
[y0 y−1

0 y1 · · · y−1
k−1yk y−1

k g],

so the identification of faces in constructing the interval complex is identical to
the equivalence relation established on Fact(g, I) when defining Fact(g,S). Since
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δ

δ

δ

δ

δ

b

c

b

c

1

δ

1

a

b

Figure 10. Gluing the cells of the order complex WFact(δ, I)
as described in Definition 4.7 yields the interval complex
WFact(δ,S). Points with the same label are glued together, which
means that all five vertices are identified and the short edges are
identified in pairs. As before, δ = ab = bc = ca in Sym3 as de-
scribed in Example 2.3.

this equivalence relation dictates the identification of faces in WFact(g, I) when
constructing WFact(g,S) and WFact(g, I) is isometric to ∆([1, g]) by Proposi-
tion 4.6, the proof is complete. □

5. Topological Graded Posets

We now define two graded posets, each with a natural topology: F(g, I), the
poset of weighted weak-ended factorizations of elements in [1, g], and F(g,S), the
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set of weighted circular factorizations of elements in [1, g]. With these in hand, we
then prove Theorems B and C.

Definition 5.1 (F(g, I)). For each g ∈ G, define F(g, I) to be the disjoint union
of topological spaces ⊔

h∈[1,g]

WFact(h, I).

This space comes with a partial order: for u,v ∈ F(g, I), we say that v is a
subfactorization of u and write v ⊆ u if v(r) ≤ u(r) in G for all r ∈ I. Define
ρ : F(g, I) → G by ρ(u) =

∏
r∈[0,1] u(r), where the factors are arranged from left

to right in increasing order of r and note that the product is well-defined since all
but finitely many factors are trivial. Then F(g, I) is a graded poset of height ℓ(g)
with rank function ℓ ◦ ρ.
Definition 5.2 (F(g,S)). Define an equivalence relation on F(g, I) by declaring
u = 0x0sx1

1 · · · sxk

k 1xk+1 and v = 0y0sy11 · · · sykk 1yk+1 if xi = yi for all i ∈ {1, . . . , k}
and gxk+1g

−1x0 = gyk+1g
−1y0. We denote the set of all such equivalence classes

by F(g,S) and observe that it inherits the partial order by subfactorizations from
F(g, I). In particular, each equivalence class can be uniquely represented by an
element of the form w = 0z0sz11 · · · szkk 11, and applying ℓ ◦ ρ to these representa-
tives provides a rank function for F(g,S). Finally, note that the quotient map

q : F(g, I) → F(g,S) given by q(0x0sx1
1 · · · sxk

k 1xk+1) = 0gxk+1g
−1x0sx1

1 · · · sxk

k 11 is
an order-preserving surjection.

Some words of caution are required when dealing with F(g,S). It is possible
that u and v could belong to the same equivalence class even though ρ(u) ̸= ρ(v),
which is why we need to take care when defining the rank function above. To give
a small example, the weighted weak-ended factorizations [1 a] and [gag−1 1] belong
to the same equivalence class, but will have different values of ρ if a and g do not
commute. Similarly, the maximal elements of F(g, I) form the set WFact(g, I) and
the maximal elements of F(g,S) form the quotient WFact(g,S), but this pattern
does not continue into the lower ranks. The elements of rank k in F(g, I) form
the disjoint union of spaces WFact(h, I) with h ∈ [1, g] and ℓ(h) = k, whereas
the elements of rank k may not be a disjoint union of WFact(h,S) spaces. See
Example 5.5.

Moving on, both F(g, I) and F(g,S) combine the structure of a graded poset
with a topology in each rank. Without making a general definition, we refer to
these as “topological graded posets” and remark that a similar class of posets was
considered by Z̆ivaljević in [Z̆98]. To give a well-known example, the set Ln(R)
of linear subspaces in Rn is partially ordered by inclusion, has a rank function
which sends each subspace to its dimension, and can be topologically viewed as the
disjoint union of the Grassmannians Gr(i,Rn), where i ∈ {0, . . . , n}.
Remark 5.3. It is straightforward to compute the lower sets of elements in F(g, I)
and F(g,S). For example, if u ∈ F(g, I) with u = 0x0sx1

1 · · · sxk

k 1xk+1 , then the
lower set ↓(u) is isomorphic to the product [1, x0]× [1, x1]× · · · × [1, xk]× [1, xk+1]
in G. Similarly, if u ∈ F(g,S) with u = 0x0sx1

1 · · · sxk

k 11, then ↓(u) is isomorphic
to the product [1, x0]× [1, x1]× · · · × [1, xk].

Example 5.4. When G = Z and X = {1}, we denote F(n, I) and F(n,S) by
C(n, I) and C(n,S) respectively and refer to subfactorizations as subcompositions.
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0213

0112 0212

0013 0112 0211

0012 0111 0210

0011 0110

∅

Figure 11. The lower set ↓(s) in C(5, I), where s = 0213

In this case, the elements of rank k in C(n, I) are precisely those in WComp(k, I)
— see Figure 12 for an example when n = 3. Similarly, the elements of rank
k in C(n,S) form WComp(k,S). Thus, we can think of C(n, I) (or C(n,S)) as
consisting of one k-dimensional orthoscheme (or orthoscheme quotient) at rank k,
for all k ∈ {0, . . . , n}. Note that if s = 0a0sa11 · · · sakk 1ak+1 , then the lower set ↓(s) is
isomorphic to the product of path posets with lengths a0, . . . , ak+1. In particular,
if s = 01s11 · · · s1k11, then ↓(s) is isomorphic to Bool(k + 2). See Figure 11.

Example 5.5. Let G = Symd, let X = T and let δ = (1 2 · · · d) as in Example 2.3.
Then F(δ, I) is the disjoint union of order complexes for the intervals [1, γ], where
γ ≤ δ in Symd, and the maximal elements form WFact(δ, I), the order complex of
[1, δ]. In F(δ,S), the maximal elements form WFact(δ,S), the interval complex of
[1, δ], but the lower-rank structure is more complicated. For example, when d = 3
and δ = ab = bc = ca as in Example 2.3, the elements of rank 1 in F(δ, I) can be
viewed as the disjoint union of three closed intervals with length 1: WFact(a, I),
WFact(b, I) and WFact(c, I). Meanwhile, the elements of rank 1 in F(δ,S) make
up a single circle of length 3, formed by identifying endpoints of the three unit inter-
vals in pairs. Finally, we note that if u ∈ WFact(δ, I) and u = 0x0sx1

1 · · · sxk

k 1xk+1 ,
then the fact that each xi can be written as a product of disjoint cycles tells us that
↓(u) is isomorphic to a product of intervals, each of which isomorphic to a product
of intervals of the form [1, (1 2 · · · m)] where m ≤ d.

From Example 5.5, we obtain Theorem B as a rephrasing of Proposition 4.10.

Theorem 5.6 (Theorem B). The maximal elements of the topological graded poset
F(δ,S) form a subspace isometric to Kδ, the dual braid complex for [1, δ].
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WComp(3, I)

WComp(2, I)

WComp(1, I)

WComp(0, I)

C(3, I)

Figure 12. In the topological graded poset C(3, I), the elements
of rank k have the metric topology of the standard k-dimensional
orthoscheme WComp(k, I). That is, each point is labeled by an
element of WComp(k, I) and each cell is labeled by an element of
Comp(k, I). Moreover, elements in rank k are above only a finite
number of elements in rank k−1, and they are below a continuum
of elements in rank k + 1.

It is straightforward to see that F(n, I) and F(n,S) are meet-semilattices, but
not lattices. Next, we give a complete characterization for the upper sets in these
graded posets, which will require two operations on weighted factorizations.

Definition 5.7 (Multiset operations). Given G-multisets u : I → G and v : I → G,
define the product G-multiset uv by (uv)(r) = u(r)v(r) and the inverse G-multiset
u−1 by u−1(r) = (u(r))−1 for all r ∈ I. Note that if u,v ∈ F(g, I) with v ⊆ u,
then v−1u is a G-multiset such that v(v−1u) = u, and by Lemma 2.4, v−1u is also
an element of F(g, I).

Lemma 5.8. Let u,v,w ∈ F(g, I) with v ⊆ u and v ⊆ w. Then u ⊆ w if and
only if v−1u ⊆ v−1w.

Proof. Since v ⊆ u and v ⊆ w, we know that ℓ(v−1(r)u(r)) = ℓ(u(r)) − ℓ(v(r))
and ℓ(v−1(r)w(r)) = ℓ(w(r)) − ℓ(v(r)). By definition, v−1u ⊆ v−1w if and only
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Figure 13. In C(3, I), the upper set of a rank-1 element (i.e. a
multiset of size 1 in the unit interval) is a copy of C(2, I). The
bending of the image is caused the inequalities between the new
multiset elements and the original multiset element.

if v−1(r)u(r) ≤ v−1(r)w(r) for all r ∈ I, which is equivalent to saying that

ℓ(v−1(r)u(r)) + ℓ(u−1(r)w(r)) = ℓ(v−1(r)w(r)).

Plugging in, we find that ℓ(u(r)) + ℓ(u−1(r)w(r)) = ℓ(w(r)), which means that
u(r) ≤ w(r) for all r ∈ I, i.e. u ⊆ w. □

One can easily see that for all h ∈ [1, g], the lower set ↓(h) is isomorphic to the
interval [1, h] and the upper set ↑(h) is isomorphic to [1, h−1g]. We have already
seen in Remark 5.3 that lower sets in F(g, I) are products of intervals in [1, g] and
thus finite. On the other hand, the upper sets in F(g, I) are uncountable, but with
a familiar structure.

Theorem 5.9. Let v ∈ F(g, I) with ρ(v) = h. Then the upper set ↑(v) is isomor-
phic to F(h−1g, I). Moreover, the maximal elements in ↑(v) form a subspace which
is isometric to the order complex for the interval [1, h−1g].

Proof. For the first claim, note that for each r ∈ I, the product
∏
s>r v(s), in

which the factors are arranged left to right in increasing order of s, is a well-defined
element of [1, g] since there are only finitely many s ∈ I such that v(s) is nontrivial.
Using this, we define ϕ : ↑(v) → F(h−1g, I) by

ϕ(u) =

(∏
s>r

v(s)

)−1

(v−1u)(r)

(∏
s>r

v(s)

)
.

If ρ(u) = h′, then we can see by definition that ρ(ϕ(u)) = h−1h′ and therefore
we do indeed have ϕ(u) ∈ F(h−1g, I). This function is a bijection with inverse
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ϕ−1 : F(h−1g, I) → ↑(v) given by

ϕ−1(w) = v(r)

(∏
s>r

v(s)

)
w(r)

(∏
s>r

v(s)

)−1

,

and both ϕ and ϕ−1 are order-preserving maps by Lemma 5.8 and the fact that
conjugation preserves the partial order on G. Therefore, ϕ is a poset isomorphism.

To describe this another way, we can write u = v(v−1u) and then deform u
by pushing the terms appearing from v to the left end of the interval, conjugating
the elements of v−1u along the way to preserve the product of h′. The weighted
factorization obtained by applying these conjugations to v−1u is what we call ϕ(u),
and the effect on the group elements is an example of a Hurwitz move as described
in Lemma 2.4. Viewing this as a continuous deformation makes clear that ϕ is not
just an isomorphism, but an isometry as well.

Finally, we know that WFact(h−1g, I) forms the set of maximal elements in
F(h−1g, I), and this is isometric to the order complex of [1, h−1g] by Proposition 4.6,
so the proof is complete. □

Replacing I with S provides Theorem C.

Corollary 5.10 (Theorem C). Let v ∈ F(g,S) with ρ(v) = h. Then the upper set
↑(v) is isomorphic to F(h−1g,S). Moreover, the maximal elements in ↑(v) form a
subspace which is isometric to the interval complex Kh−1g for [1, h−1g].

Proof. By definition of the subfactorization order on F(g,S) and the associated
quotient map, we have ↑(v) = q(↑(v)), where v ∈ F(g, I) is any representative of
the equivalence class v. Thus, the first claim follows from Theorem 5.9. The second,
following similar reasoning to the proof above, follows from Proposition 4.10. □

Finally, we state two corollaries obtained from Theorem 5.9 and Corollary 5.10
for the special cases described in Examples 5.4 and 5.5.

Corollary 5.11. Let s ∈ C(n, I) with ρ(s) = k. Then ↑(s) is isomorphic to
C(n − k, I), and the maximal elements of ↑(s) form a subspace which is isomet-
ric to an orthoscheme of dimension n− k. Similarly, the upper set ↑(s) in C(n,S)
is isomorphic to C(n − k,S), and the maximal elements of ↑(s) form a subspace
which is isometric to a quotient of the standard orthoscheme of dimension n− k.

Corollary 5.12. Let δ be the d-cycle (1 · · · d) ∈ Symd as in Example 5.5 and
let u be a weighted circular factorization of γ ∈ [1, δ]. Then the upper set ↑(u) in
F(δ,S) is isomorphic to F(γ−1δ,S). Moreover, the maximal elements of ↑(u) form
a subspace of the dual braid complex which is isometric to a product of dual braid
complexes with smaller dimension.

6. Continuous Noncrossing Partitions

We now examine F(δ,S) in the special case when G = Symd, X = T , and
δ = (1 2 · · · d) as described in Example 2.3. In particular, we introduce a new
type of noncrossing partition and use this to prove Theorems A and D.

Definition 6.1 (Noncrossing partitions). Let P be a subset of the complex plane
and let Π(P ) denote the lattice of all partitions of P , partially ordered by refine-
ment. The elements of each partition are subsets of P called blocks, and we say
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that a partition is noncrossing if the convex hulls of its blocks are pairwise disjoint
regions in C. We define the poset of noncrossing partitions for P to be the subposet
of noncrossing elements in Π(P ), denoted NC(P ).

When P is the vertex set for a convex n-gon, NC(P ) is the classical lattice of
noncrossing partitions NC(n), originally defined by Kreweras in 1972 [Kre72]. The
following theorem, proven 25 years later by Biane, illustrates our interest in NC(n).

Theorem 6.2 ([Bia97]). Let ψ : Symd → Π(d) be the function which sends each
permutation to the partition formed by the orbits of its action on {1, . . . , d}. Then
ψ restricts to an isomorphism from [1, δ] to NC(d).

The decade following Biane’s theorem produced a flurry of connections between
the absolute order on the symmetric group and the combinatorics of noncrossing
partitions - see the survey articles [BBG+19] and [McC06] for more background.
One of these connections, involving a variation on noncrossing partitions due to
Armstrong [Arm09], will be of use to us later in this section.

Definition 6.3 (Shuffle partitions). Let π ∈ Π(dk). Then π is a k-shuffle partition
if a ≡ b (mod k) whenever a and b belong to the same block of π. When this is the
case, note that for each j ∈ {1, . . . , k}, we may identify the set {1, . . . , d} with the
equivalence class of j via the map m 7→ (m−1)k+j to obtain a partition πj ∈ Π(d)
which is induced by π. Then π is uniquely determined by the k-tuple (π1, . . . , πk).

Theorem 6.4 ([Arm09, Theorem 4.3.5]). Let x1, . . . , xk ∈ [1, δ], let πi = ψ(xi) for
each i, and define π to be the k-shuffle partition in Π(dk) which is determined by
the k-tuple (π1, . . . , πk). Then π is noncrossing if and only if ℓ(x1) + · · ·+ ℓ(xk) =
ℓ(x1 · · ·xk).

Some recent progress on the structure ofNC(P ) when P is finite (but not convex)
can be found in [CDHM], but seemingly little attention has been devoted to cases
where P is infinite. Here, we are interested in the case where P is the unit circle S.
We refer to NC(S) as the poset of continuous noncrossing partitions, and we are
particularly interested in a subposet of these which are compatible with a covering
map for the circle.

Definition 6.5 (Degree-d-invariant partitions). Let f : S → S be the standard
degree-d covering map f(z) = zd. We say that a partition π ∈ Π(S) is degree-d-
invariant if f(z) = f(w) whenever z and w belong to the same block of π. When
this is the case, we may fix numbers 0 = s0 < s1 < · · · < sk < 1 such that z
belongs to a nontrivial block of π only if f(z) = e2πisj for some j, then identify
each preimage f−1(e2πisj ) with the set {1, . . . , d} by reading off the preimages
in increasing order of argument in [0, 2π). If we let πj be the partition in Π(d)
determined by π in this way, then π can be uniquely denoted by the expression
π = 0π0sπ1

1 · · · sπk

k . It is clear from this construction that π is noncrossing if and
only if the (k + 1)-shuffle partition determined by (π0, π1, . . . , πk) is noncrossing.
Denote the subposet of all degree-d-invariant partitions by Πd(S) and the subposet
of all degree-d-invariant noncrossing partitions by NCd(S). Note that one may
replace f with any covering map S → S of degree d, and the resulting poset of
“f -invariant” noncrossing partitions will be isomorphic to NCd(S).
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Figure 14. A degree-12-invariant noncrossing partition π to-
gether with its component partitions π1, π2, π3, π4 ∈ NC(d), as
described in Example 6.6.

Example 6.6. The degree-12-invariant noncrossing partition in Figure 1 can de-
scribed by the shorthand π = 0π00.1π10.4π20.5π30.9π4 , where

π0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}};
π1 = {{1}, {2}, {3}, {4, 5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}};
π2 = {{1, 2, 3, 11}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {12}};
π3 = {{1}, {2}, {3, 6, 8}, {4}, {5}, {7}, {9}, {10}, {11, 12}};
π4 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8, 9, 10}, {11}, {12}}.

See Figure 14 for an illustration (omitting the discrete partition π0) and note that
when superimposed in the proper order, these partitions form a noncrossing hyper-
tree on the vertex set {1, . . . , 12} as described in [McC].

It would have been reasonable to refer to the elements of NCd(S) as “contin-
uous shuffle partitions” considering their resemblance to Definition 6.3. Instead,
we use the descriptor degree-d-invariant to recognize their previous appearance in
unpublished work of the late W. Thurston, which was later completed by Baik,
Gao, Hubbard, Lei, Lindsey, and D. Thurston [TBY+20]. In this article, Thurston
and his collaborators described a spine for the space of monic complex polynomi-
als with d distinct roots, where each point is labeled by a “primitive major” of a
degree-d-invariant lamination of the disk.

The following definition and lemma rephrase a useful observation of Thurston’s
regarding the maximum number of non-singleton blocks in a degree-d invariant
noncrossing partition.

Definition 6.7 (Total criticality). Let π ∈ Πd(S) and suppose that π has k non-
singleton blocks, denoted A1, . . . , Ak. The total criticality of the partition π is
defined to be |A1| + · · · + |Ak| − k. It is straightforward to see that the total
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criticality gives a rank function rk: Πd(S) → N, and this descends to a rank function
for NCd(S).

The total criticality of a generic degree-d-invariant partition can be arbitrarily
large, but this is not the case for their noncrossing counterparts.

Lemma 6.8 ([TBY+20, Proposition 2.1]). If π ∈ NCd(S), then the total criticality
of π is at most d− 1. Consequently, NCd(S) is a graded poset of height d− 1.

It follows from Lemma 6.8 that a degree-d invariant noncrossing partition has
at most d− 1 non-singleton blocks (in which case each has two elements). We can
also give a clear characterization of the maximal elements in NCd(S) as follows.

Definition 6.9 (Complementary regions). Let π ∈ NCd(S) and identify S with the
boundary of a disk. The complementary regions of π are the connected components
of the disk after removing the convex hulls of the blocks of π.

Lemma 6.10. The partition π ∈ NCd(S) has rk(π) + 1 complementary regions.
Consequently, the maximal elements of NCd(S) are those which have exactly d
complementary regions.

Proof. If π is a degree-d-invariant noncrossing partition, then we can illustrate π
in the disk and define a dual bipartite tree for π by placing a black vertex in each
convex hull and a white vertex in each complementary region, then connecting a
black vertex to a white vertex when the two corresponding regions are adjacent. If π
has k non-singleton blocks, then the tree must have k black vertices and rk(π)+k =
d−1+k edges. By the Euler characteristic, the number of vertices for a tree is always
one more than the number of edges, so it follows that the number of white vertices,
and thus the number of complementary regions, is rk(π) + 1. By Lemma 6.8, we
may thus conclude that π is a maximal element of NCd(S) if and only if it has d
complementary regions. □

Given π ∈ NCd(S), we can draw the convex hulls of the blocks of π in the
disk with unit circumference, then deformation retract each convex hull to a point.
Under this transformation, the boundary of the disk becomes a metric graph known
as a cactus, and in the special case where π is maximal, Lemma 6.10 tells us that this
graph can be built by gluing together d circles, each of length 1/d. We studied these
graphs in [DM22], where we associated such a graph to each complex polynomial
with distinct roots and critical values on the unit circle. In [DM22, Section 8],
we also described a connection between continuous noncrossing partitions (then
referred to as “real” noncrossing partitions) and a type of metric tree that we
called a banyan. These connections between NCd(S) and complex polynomials are
of central importance in our ongoing paper series [DMa].

We are now ready to prove Theorem A. Recall from Definition 4.1 that the set
of all G-multisets from S to G is denoted by Mult(G,S).

Theorem 6.11 (Theorem A). Define Ψ: Mult(Symd,S) → Πd(S) by sending

the Symd-multiset 0x0sx1
1 · · · sxk

k 11 to the partition 0ψ(x0)s
ψ(x1)
1 · · · sψ(xk)

k . Then Ψ
restricts to an isomorphism from F(δ,S) to NCd(S).

Proof. Let x = 0x0sx1
1 · · · sxk

k 11 ∈ Mult(Symd,S), define πj = ψ(xj) for each j
and consider the partition Ψ(x) = 0π0sπ1

1 · · · sπk

k . As outlined in Definition 6.5,
Ψ(x) is noncrossing if and only if the shuffle partition in Π(dk + d) determined by
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Ψ

(4 5)(1 2 3 11)

(3 6 8)(11 12)

(8 9 10)

Figure 15. A continuous noncrossing partition in NC12(S) and
its corresponding weighted circular factorization in F(δ,S)

(π0, . . . , πk) is noncrossing, and this is equivalent to having x0, . . . , xk ∈ [1, δ] and
ℓ(x0) + · · ·+ ℓ(xk) = ℓ(x0 · · ·xk) by Theorem 6.4. By Lemma 2.4, this condition is
satisfied by all elements of F(δ,S), so Ψ restricts to a map F(δ,S) → NCd(S). See
Figure 15.

To see that Ψ is surjective, let π = 0π0sπ1
1 · · · sπk

k be an element of NCd(S) and
note that k ≤ d− 1 by Lemma 6.8. By Theorem 6.2, we may define xi = ψ−1(πi)
for each i and again apply Theorem 6.4 to see that 0x0sx1

1 · · · sxk

k 11 is an element of
F(δ,S) which is sent to π. Injectivity of Ψ then follows from Theorem 6.2 and by
the definitions of the partial orders, x ≤ y in F(δ,S) if and only if Ψ(x) ≤ Ψ(y) in
NCd(S). Therefore, Ψ is an isomorphism and the proof is complete. □

As a consequence of Theorem 6.11, we can import the topology and cell structure
from F(δ,S) to NCd(S) - see Figure 16 for an example using the maximal elements
of NC3(S). In [TBY+20], Thurston and his collaborators gave a topology for the
maximal elements of NCd(S) using a slightly different metric: all edges of the
dual braid complex would have equal length in their metric, whereas the lengths
differ in the orthoscheme metric as described in Remark 1.5. Nevertheless, the two
topologies are homeomorphic.

Let Polymcd (U) denote the space of monic degree-d complex polynomials for
which the roots are centered at the origin and the critical values lie in the subspace
U ⊆ C. The following theorem from [TBY+20] uses the topology above to provide
a spine for Polymcd (C∗), the space of polynomials with distinct roots.

Theorem 6.12 ([TBY+20, Theorem 9.2]). The space of maximal elements in
NCd(S) is homeomorphic to Polymcd (S), and there is a deformation retraction
from Polymcd (C∗) to Polymcd (S).

Recall that Yd is the quotient space (Cd −Ad)/Symd.

Corollary 6.13 (Theorem D). There is a topological embedding of the dual braid
complex Kδ into Yd such that Yd deformation retracts onto the image of the embed-
ding.

Proof. Noting that a polynomial has distinct roots if and only if its critical values
are nonzero, there is a homeomorphism from Yd to Polymd (C∗) which sends the
equivalence class of the d-tuple (z1, . . . , zd) to the polynomial (z−z1) · · · (z−zd). By
translating the roots so that their centroid lies at the origin, we obtain a deformation
retraction from Polymd (C∗) to Polymcd (C∗). From here, Theorem 6.12 tells us that
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Figure 16. The isomorphism described in Theorem 6.11 allows
us to label the points in the dual braid complex from Figure 10
by maximal elements of NC3(S). As before, points with the same
label are glued together, which means that all five vertices are
identified and the short edges are identified in pairs.

Polymcd (C∗) deformation retracts to Polymcd (S), which is homeomorphic to the
maximal elements of NCd(S), which in turn is homeomorphic to the dual braid
complex Kδ by Theorems 5.6 and 6.11, so the proof is complete. □
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