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Abstract. There are many different algebraic, geometric and combinatorial

objects that one can attach to a complex polynomial with distinct roots. In
this article we introduce a new object that encodes many of the existing objects

that have previously appeared in the literature. Concretely, for every complex

polynomial p with d distinct roots and degree at least 2, we produce a canonical
compact planar 2-complex that is a compact metric version of a tiled phase

diagram. It has a locally CAT(0) metric that is locally Euclidean away from

a finite set of interior points indexed by the critical points of p, and each
of its 2-cells is a metric rectangle. From this planar rectangular 2-complex

one can use metric graphs known as metric cacti and metric banyans to read

off several pieces of combinatorial data: a chain in the partition lattice, a
cyclic factorization of a d-cycle, a real noncrossing partition (also known as

a primitive d-major), and the monodromy permutations for the polynomial.
This article is the first in a series.

Dedicated to the memory of Patrick Dehornoy.

Introduction

Complex polynomials have long been central objects in many fields, and ef-
forts to understand them have incorporated several different algebraic, geomet-
ric and combinatorial tools. Examples include the study of polynomial lemnis-
cates [CP91, CW91, EMHZZ96, Zvo00], monodromy groups [CP91, CW91, Hum03,
Mic06, Weg20], metric cacti [Nek14], and modulus graphs [EHL18]. In this article
we add a new item to this list. Recall that if p : C → C is a complex polynomial
with p′(b) = 0, then b is a critical point and p(b) is the corresponding critical value.
It is well known that if p has distinct roots, then the critical points are disjoint
from the roots and thus the critical values of p are nonzero. If we write Crts and
C0 to denote the complex plane with the roots removed or with zero removed, re-
spectively, then p may be restricted to a map p0 : Crts → C0. Our main theorems
concern the manipulation of this restricted polynomial map into a map between
metric cell structures on compact surfaces.

By a straightforward projection, C0 may be identified with the interior of a
compact annulus A. If we pull the standard annular metric back to Crts via p0,
then Crts becomes a bounded metric space which is an open “branched” annulus,
and its metric completion Bp is a compact metric surface with boundary. The result
is a new discretely branched map pA : Bp → A between compact metric surfaces
with boundary.

Theorem A (Geometry). Let p be a complex polynomial with d distinct roots.
Then Bp is a compact metric surface of genus 0 with d + 1 boundary components.
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The metric for B is locally CAT(0) and is locally Euclidean away from a finite set
of interior points indexed by the critical points of p.

If p has degree at least 2, then it has critical values and these determine a
rectangular cell structure for A which we refer to as Ap. Pulling back via pA
provides the metric rectangular cell complex Bp which can be seen as a compact
metric version of a tiled phase diagram (as described in [Weg20]) and makes p into
a cellular map p : Bp → Ap.

Theorem B (Topology). Let p be a complex polynomial with d distinct roots and
degree at least 2. Each vertex on the boundary of the metric cell complex Bp has
degree 3. Every other vertex is labeled by a point in C; those which are critical
points of multiplicity k have valence 4(k + 1), while the rest have valence 4.

A natural pair of transverse foliations on A emerges by envisioning the annulus
as being oriented vertically. One foliation consists of horizontal latitude circles and
the other consists of vertical longitude lines. In each case, we refer to a foliation
leaf as critical if it contains a critical value of p and regular if it does not. The
pullbacks of these foliations in Bp determine the cell structure of Bp in the sense
that each critical leaf is a subcomplex of Ap and its preimage is a subcomplex of
Bp. For simplicity, we refer to the preimage of a latitude as a level set and the
preimage of a longitude as a direction set. Each of these preimages (or equivalently
certain subcomplexes of Bp) determines combinatorial objects associated to p.

Theorem C (Combinatorics). Let p be a complex polynomial with d distinct roots.
Each regular level set determines a partition of the set rts of roots. Taken together,
the collection of all regular level sets determines a chain in the partition lattice
Πrts. Meanwhile, each regular direction set determines a cyclic ordering of the
set of roots. Taken together, the collection of all regular direction sets determines
a factorization of the d-cycle (1 · · · d). Finally, given any regular level set and
regular direction set, the partition determined by the former is noncrossing with
respect to the permutation determined by the latter.

In the discussion surrounding Theorem C, we also describe several useful combi-
natorial objects associated to a complex polynomial. These include metric graphs
known as metric cacti and metric banyans, as well as a continuous variant of a
noncrossing partition which we refer to as a real noncrossing partition. Some of
these tools are very closely related to the primitive d-major defined in [TBG+19].

This article is the first in a series in which we highlight the strong connections
between complex polynomials with distinct roots and a variety of metric and com-
binatorial objects. Future articles will use these tools to examine the space of
polynomials and address how these objects change as polynomials are continuously
varied. As an example, we will show that the combinatorial data outlined in The-
orem C can be used to reconstruct the cell structure for Bp; in particular, two
polynomials are topologically equivalent if they have the same associated chain of
partitions and factorization of the d-cycle (1 · · · d).

More generally, the goal of this series of articles is to describe a natural stratifi-
cation (and compactification) of the space of complex polynomials with d distinct
ordered roots (also known as the complement of the complex braid arrangement)
into strata with locally flat Euclidean metrics. We will also describe a deforma-
tion retraction of this space onto a subcomplex which is isometric to the pure dual
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braid complex, a simplicial complex associated to the braid group [Bra01, BM10].
This embedding of the pure dual braid complex in the complex braid arrangement
complement is new to the literature, but the existence of such an embedding has
been known to Daan Krammer for some time. This deformation retraction is also
closely related to the retraction described in [TBG+19].

The present article is structured as follows. Sections 1 and 2 establish some
conventions regarding disks, annuli and how to draw them. Section 3 reviews some
basic information on roots, critical points and critical values, and we use this in
Section 4 to construct the branched annulus and establish its key properties. In
Section 5, we give a detailed description of how to draw a planar picture for the
branched annulus. Section 6 detail the combinatorial information encoded in the
two foliations of this surface. Finally, Sections 7, 8 and 9 describe how a chain of
root partitions, a factorization of a d-cycle and the monodromy action can be read
off of the branched annulus.

Acknowledgements: This article is dedicated to the memory of Patrick Dehornoy.
In the short film that he created as part of the celebration of his retirement, Patrick
depicted himself looking down from paradise and keeping track of the afterlife of
his mathematical work. Patrick’s ideas have had an enormous impact on the direc-
tion of our research, and as this series of articles progresses, we hope to show that
the Garside structures he pioneered are deeply connected to the geometric combi-
natorics of complex polynomials. The authors are also deeply indebted to Daan
Krammer; his comments to the second author (at Patrick’s retirement conference)
prompted this line of inquiry. Finally, we would also like to thank Steve Trettel for
his help in visualizing the foliations described in Section 6.

1. Disks and Annuli

This section describes two elementary homeomorphisms: one from the complex
numbers to the interior of a disk using polar coordinates, and another from the
nonzero complex numbers to the interior of an annulus using cylindrical coordinates.
The map to the annulus is used to define the branched annulus that is our main
object of study. The map to the disk is only used to give a planar representation
of the resulting surface. For simplicity, let 0 = {0} and let CA be C \ A for any
A ⊂ C. In particular, C0 = C∗.

Definition 1.1 (Polar and cylindrical coordinates). Every nonzero complex num-
ber has a unique polar form z = ru, where r = |z| ∈ R+ is its magnitude and
u = z/r ∈ S1 ⊂ C is its argument or direction. In particular, the map z 7→ (r, u)
identifies C0 with R+ × S1. At the origin r = 0 and u is arbitrary. If we identify C
with the xy-plane in R3, via the pairing of x+ iy with (x, y, 0), then polar coordi-
nates (r, u) on C can be extended to cylindrical coordinates (r, u, t) on R3. On the
t-axis, r = 0 and u is arbitrary. Note that height in R3 is denoted t, since z’s are
used for complex numbers.

Definition 1.2 (Unit disk). Let D ⊂ C be the closed unit disk and let Dint be
its interior. Let iD : C ↪→ D be the map that sends z = ru to iD(z) = su where

s = r/
√
r2 + 1. The map iD is a homeomorphism from C to Dint. Geometrically, it

sends the horizontal coordinates of the hyperboloid model of the hyperbolic plane
to the Klein model. For clarity, we use s for the magnitude of a complex number
in D and r for the magnitude of a complex number in C.
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Figure 1. The once-punctured plane, the twice-punctured sphere
and the vertical annulus.

The second homeomorphism is constructed using stereographic projection.

Definition 1.3 (Riemann sphere). The 2-sphere in R3 can be viewed as the one-
point compactification of the complex plane via stereographic projection. Projec-
tion from the point (0, 0, 1) sends the point z = ru ∈ C to the point with cylindrical

coordinates ( 2r
1+r2 , u,

r2−1
r2+1 ) ∈ S2. This sends C to the 2-sphere minus the north pole

and the origin is sent to the the south pole. Thus the image of C0 is the twice-
punctured 2-sphere with both the north and south poles removed.

Definition 1.4 (Vertical annulus). Let S = S1 ⊂ C, let I = [−1, 1] ⊂ R, and let
A = S× I be the closed vertical annulus formed by the points in R3 with cylindrical
coordinates (1, u, t), u ∈ S and t ∈ I. These are the points that are distance 1
from the t-axis, in an arbitrary direction in S and with a height in I. The interior
of A is the open vertical annulus Aint = S × Iint. Let iA : C0 → A be the map
that sends z = ru to the point iA(z) = (1, u, t), where t = (r2 − 1)/(r2 + 1).
Then iA is a homeomorphism from C0 to Aint. Geometrically, it is the result
of stereographically projecting the once-punctured plane to the twice-punctured
sphere and then radially projecting away from the t-axis to the vertical annulus A.

Figure 1 shows the geometric relationship between the once-punctured plane, the
twice-punctured sphere and the vertical annulus. The vertical annulus is a metric
product and there are projection maps onto each factor.

Definition 1.5 (Projection maps). Let hgt : A → I be the map that sends (1, u, t)
to its height t and let arg : A → S be the map that sends (1, u, t) to its argument
u. We call hgt(x) ∈ I the height of x and we call arg(x) ∈ S the argument of x.

Latitude circles and longitude lines are standard subsets of the twice-punctured
sphere, and we borrow these names for the corresponding subsets of the annulus.

Definition 1.6 (Latitude circles). A latitude circle on the 2-sphere radially projects
to a horizontal circle in A. We call Latt = hgt−1(t) = {(1, u, t) | u ∈ S} the latitude
circle at height t in A. For each t ∈ Iint, the preimage of Latt ⊂ Aint is the circle
i−1
A (Latt) = {ru | u ∈ S1} ⊂ C0 of radius r =

√
(1 + t)/(1− t) and the image

iD(i−1
A (Latt)) ⊂ D is a circle of radius s =

√
(1 + t)/2. Both circles are centered

at the origin. The latitude circles Lat1 and Lat−1 are the boundary circles of A,
and note that ∂A = A \ Aint = Lat1 ∪ Lat−1.
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Definition 1.7 (Longitude lines). A longitude line on the 2-sphere radially projects
to a vertical segment in A. We call Longu = arg−1(u) = {(1, u, t) | t ∈ I} the
longitude line in direction u in A. Note that it is the closure in A of the radial
projection. For each u ∈ S, the preimage of the longitude line Longu ⊂ A is the
open ray i−1

A (Longu) = {ru | r ∈ R+} ⊂ C0 and the image iD(i−1
A (Longu)) ⊂ D

is the open line segment from 0 to u in D.

Remark 1.8 (Transverse measures). The latitude circles and longitude lines form
a very simple pair of transverse measured foliations arising from the Euclidean
structure on the vertical annulus A. The interval I, which indexes the latitude
circles, has measure 2, the circle S, which indexes the longitude lines, has measure
2π, and the annulus A has area 4π.

The annulus A can be given a 2-complex structure built out of rectangles.

Definition 1.9 (Points and rectangles). If U ⊂ S is a non-empty finite set of
directions of size |U | = k, then there is a natural minimal cell structure on S that
contains the k elements of U as vertices and the k intervals between them as edges.
We write S instead of S when the circle has been given a specific cell structure. If
T ⊂ Iint is a finite set of heights of size |T | = ℓ, then there is a natural minimal cell
structure on I = [−1, 1] that contains the ℓ+ 2 elements of T ∪ {−1, 1} as vertices
and the ℓ + 1 intervals between them as edges. We write I instead of I when this
interval has been given a specific cell structure. Given U and T as described above,
let A = S × I be the natural product cell structure on A. Note that this is the
minimal cell structure on A that contains the latitude circles {Latt}t∈T and the
longitude lines {Longu}u∈U as subcomplexes. The ℓ latitude circles decompose
the vertical annulus A into ℓ+1 shorter annuli and the k longitude lines decompose
each annulus into k rectangles. Thus A has k(ℓ + 2) 0-cells, k(2ℓ + 3) 1-cells and
k(ℓ+1) 2-cells, and each 2-cell is a metric rectangle. More generally, one can create
such a cell structure A from any non-empty finite subset V ⊂ Aint. Simply define
U = arg(V ) and T = hgt(V ) and proceed as above. The resulting rectangular
2-complex A is the smallest rectangular tiling of this type that contains all of V in
its 0-skeleton.

Example 1.10 (Four points). Consider the four points {.46,−1.62, .3± .56i} ⊂ C0

and let V ⊂ Aint be the image of this set under iA. The points in C0 have three
magnitudes and four arguments, so their images in A have three heights and four
arguments. The circle S has 4 vertices and 4 edges, the interval I has 5 vertices and
4 edges, and the 2-complex A = S× I has 20 vertices, 36 edges and 16 rectangles.

For later use we introduce a notation for the connected covers of S or S.

Definition 1.11 (Covers of a circle). For each positive integer k, let S(k) ⊂ C
denote the circle of radius k centered at the origin. The map z 7→ (z/k)k restricts
to a k-fold covering and a local isometry S(k) → S. If S is given a cell structure,
S, then we can lift through the cover to obtain a cell structure for S(k) which we
denote as S(k), resulting in a cellular covering map S(k) → S.

2. Drawing an Annulus

It is sometimes convenient to display structures on the vertical annulus A ⊂ R3

by embedding A into the unit disk D. This distorts the intrinsic metric of A, but it
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Figure 2. Drawing the annulus A inside the disk D.

produces a planar image. The composition iD ◦ i−1
A almost works for this purpose

since it maps the open annulus Aint homeomorphically to Dint
0 , the open disk with

the origin removed. However, the extension of this map obtained by metrically
completing both domain and range is no longer a homeomorphism. The upper
boundary Lat1 in A is sent homeomorphically to ∂D, but at that bottom of the
annulus, the entire circle Lat−1 is sent to the origin. To correct for this, we make a
small modification to pull the image of the open annulus away from the puncture.

Definition 2.1 (Enlarging a puncture). Let D = D(α) be the closed disk of radius
α > 0 centered at the origin and let D0 = D \ 0. The map z 7→ α(z/|z|) retracts
the punctured disk D0 onto its boundary ∂D0 = αS, the circle of radius α, and
the straightline homotopy Hϵ : D0 → D0 sending z to z + ϵ(α(z/|z|) − z), with
ϵ ∈ [0, 1], shows that this retraction is a deformation retraction. Moreover, Hϵ is
a homeomorphism onto its image for all 0 ≤ ϵ < 1, creating a homeomorphsim
between D0 and DB = D \ B, where B = D(β) is the closed disk of radius β =
ϵ ·α < α. This can be extended to the rest of C by fixing all points outside D, and
the extended Hϵ : C0 → C0 creates a homeomorphism between C0 and its image
CB that is the identity outside of CD.

Definition 2.2 (Drawing A inside D). Pick small numbers α > β > 0 and define
the extended map Hϵ : C0 → C0 as described in Definition 2.1 with ϵ = β/α. With
this slight pertubation around the origin, the composition iD◦Hϵ◦i−1

A maps the open
annulus homemorphically to the open unit disk with a closed neighborhood of the
origin removed, and this homeomorphism does extend to a well-behaved embedding
jAD : A ↪→ D between their metric completions. See Figure 2. In particular, jAD

homeomorphically embeds A into D and it agrees with the metric completion of the
map i−1

A ◦ iD except in a small neighborhood of the lower boundary circle Lat−1.
We use this type of identification whenever we draw A inside D.

Example 2.3 (Four points, revisited). Example 1.10 described a metric rectangu-
lar cell structure on the vertical annulus. Figure 3 shows the corresponding tiling
mapped to the disk D using the embedding jAD (Definition 2.2). The sides of the
rectangles appear curved in the figure, but they are true Euclidean rectangles since
the metric comes from that of the vertical annulus A.

3. Polynomials with Distinct Roots

This section records basic facts about the roots, critical points and critical values
of a complex polynomial.

Definition 3.1 (3 sets). Let Polyd(C) ⊂ C[z] denote the subset of all polynomials
of degree d in C[z] with d ∈ N. A complex polynomial of degree d is conventionally
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Figure 3. A metric rectangular cell complex on the annulus in-
duced by four points and then drawn in the disk. The images of
the four original points are drawn as large dots.

written in additive form using d+1 coefficients: p(z) = cdz
d+· · · c1z1+c0, where the

leading coefficient cd is nonzero and all of the others are arbitrary, but the behavior
of the polynomial map p : C → C, sending z to p(z), is easier to analyze when the
formula is written multiplicatively. By the Fundamental Theorem of Algebra p(z)
can be factored completely: p(z) = cd(z− a1)(z− a2) · · · (z− ad) with cd ∈ C0 and
ai ∈ C for all i ∈ {1, 2, . . . , d}. The elements of the set {a1, a2, . . . , ad} ⊂ C are the
roots of p and the number cd is its leading coefficient. The critical points of p are
the roots of its derivative and the critical values of p are the images of its critical
points. In symbols:

rts = Roots(p) = {a ∈ C | p(a) = 0}
cpt = CritPts(p) = {b ∈ C | p′(b) = 0}
cvl = CritVls(p) = {c ∈ C | c = p(b), b ∈ cpt}

As a mnemonic device, we tend to use a’s, b’s and c’s when naming individual
roots, critical points and critical values, respectively. Note that rts and cpt are
subsets in the domain and cvl is a subset in the range. Moreover, p(rts) = 0,
rts = p−1(0), p(cpt) = cvl and cpt ⊂ p−1(cvl). The map p restricts to a map
p0 : Crts → C0. When the roots of p are distinct, rts has size d and the polynomial
can be recovered from its set of roots and its leading coefficient. We say ‘set’ rather
than ‘list’ since the ordering of the linear factors is clearly irrelevant. An arbitrary
polynomial can be recovered when one records the multiplicity of each root.
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Figure 4. Three finite sets associated with the polynomial given
in Example 3.4. The domain, on the left, contains its five roots,
shown as white dots, and its four critical points, shown as blue
dots. The range, on the right, contains its four critical values,
shown as red dots. The two images use different scales.

Definition 3.2 (Multisets). A multiset is a set S together with a multiplicity
function m : S → N. The number m(s) is the multiplicity of s ∈ S. The mul-
tiplicity function m is usually left implicit and a multiset is named after its un-
derlyng set. A finite multiset can be concisely described using the notation S =
{sm1

1 , sm2
2 , . . . , smk

k } where the underlying set is S = {s1, . . . , sk}, with si = sj if and
only if i = j, and where the exponent mi = m(si) denotes the multiplicity of the
element si. The size of the multiset S is the sum of its multiplicities: d =

∑
i mi,

but the size of the (underlying) set S is simply k. Note that d > k unless every
element has multiplicity 1. The collection of all multisets of complex numbers of
size d is denoted Multd(C).

Definition 3.3 (3 multisets). Let p ∈ Polyd(C) be a polynomial of degree d. The
roots, critical points and critical values of p can be converted from sets to multisets
by specifying their multiplicity functions. The multiplicity of a root a ∈ rts is the
number of times that (z−a) occurs as a linear factor in the complete factorization of
p(z). The multiplicity function of a critical point b ∈ cpt is the number of times that
(z − b) occurs as a linear factor in the complete factorization of p′(z). Finally, the
multiplicity of a critical value c ∈ cvl is the sum of the multiplicities of the critical
points sent to c, i.e. m(c) =

∑
b∈cptc

m(b), where cptc = {b ∈ cpt | p(b) = c}.

For a generic polynomial all three of these multisets are sets. The polynomial in
Example 3.4 is our standard example that is used throughout the article.

Example 3.4 (3 sets: generic case). For p(z) = .02(3z5−15z4+20z3−30z2+45z),
all three multisets are sets. It has a set of five distinct roots rts = {a1, a2, a3, a4, a5}
that we have indexed at random. Three of the roots are real (a1 = 0, a2 ≈ 1.7944
and a3 ≈ 3.5972), and there is one complex conjugate pair (a4 = x + yi and a5 =
x− yi where x ≈ −0.1958 and y ≈ 1.5117). The critical points and critical values
are easier to describe because the derivative factors as p′(z) = .3(z−1)(z−3)(z2+1).
It has a set of four distinct critical points cpt = {1, 3,±i} and a set of four distinct
critical values cvl = {.46,−1.62, .3± .56i}. The 3 multisets for this polynomial are
shown in Figure 4. Note that cvl is the set used in Example 1.10.

At the other extreme, there might be just one critical point and one critical value.
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Example 3.5 (3 multisets: special case). Let p(z) = a(z − b)d + c with a ∈ C0

and b, c ∈ C. If n = d− 1, then the derivative is p′(z) = a · d(z − b)n. The multiset
cpt = {bn}; there is only one critical point of multiplicity n. And since p(b) = c,
the multiset cvl = {cn}; there is only one critical value, also of multiplicity n.
The roots of p are complex numbers of the form b plus a d-th root of −c/a, so the
character of the roots depends on the value of c. If c = 0, then rts = {bd}; there
is only one root of multiplicity d = n+ 1. But if c ̸= 0, then there d distinct roots
equally spaced around a circle centered at b.

In fact, a polynomial with only one critical value must be one of those listed in
Example 3.5. We record some basic facts about polynomials for later use.

Proposition 3.6 (Polynomials and roots). If p is a complex polynomial of degree d,
then its multiset of roots has size d. Conversely, every polynomial p can be uniquely
reconstructed from its leading coefficient and its multiset of roots. In particular,
there is a natural bijection Polyd(C) ∼= C0 ×Multd(C).

Proof. Given (cd, {am1
1 , . . . , amk

k }) in C0×Multd(C) with
∑

i mi = d, simply define
p(z) = cd(z − a1)

m1 · · · (z − ak)
mk . □

Proposition 3.7 (Polynomials and derivatives). Every polynomial is determined
by its derivative and its value at one point. Explicitly, when p ∈ C[z] be a polynomial
with p(b) = c, p(z) =

∫ z

b
p′(w)dw+ c and, in the special case where a is a root, this

simplifies to p(z) =
∫ z

a
p′(w)dw.

Proof. For any b ∈ C, the integral
∫ z

b
p′(w)dw+ c = p(z)− p(b) + c, which is equal

to p(z) when p(b) = c. □

Proposition 3.8 (Polynomials and critical points). Every polynomial can be re-
constructed from its leading coefficient, its multiset of critical points and its value
at one point.

Proof. The leading coefficient of p and the leading coefficient of p′ are closely re-
lated, in the sense that each determines the other and the critical points of p are the
roots of p′. Thus, p′ can be reconstructed from the leading coefficient of p and the
multiset of critical points of p (Proposition 3.6), and then p can be reconstructed
from p′ and the value of p at one point (Proposition 3.7). □

Remark 3.9 (Polynomials and critical values). Every multiset of size n of complex
numbers can be realized as the critical values of a polynomial of degree d = n+ 1,
but the proof is somewhat indirect, and the map from polynomials to critical values
is finite-to-one, adding to the ambiguity [BCN02]. In particular, it is fairly difficult
to explicitly construct one of the finitely many polynomials have a specified multiset
as its multiset of critical values.

Polynomials with distinct roots have many characterizations.

Proposition 3.10 (Distinct roots). For a polynomial p ∈ Polyd(C) the following
are equivalent: (1) p has d distinct roots, (2) the roots and critical points of p are
disjoint multisets, (3) 0 is not a critical value of p, i.e. cvl ⊂ C0.

Proof. If a ∈ rts is a root, then p(a) = 0, and p(z) = (z−a)q(z) for some polynomial

q(z). In particular, p′(a) = limz→a
p(z)−p(a)

z−a = limz→a q(z) = q(a). Thus q(a) = 0

if and only if p′(a) = 0, which means that p has a multiple root at a if and only if
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a is both a root and a critical point of p. Thus (1) and (2) are equivalent. When
there is an element that is both a root and a critical point, rts ∩ cpt is not empty
and p(rts ∩ cpt) ⊂ p(rts) ∩ p(cpt) = 0 ∩ cvl is also not empty, so not (2) implies
not (3). Conversely, when 0 is an element of cvl, there is an element b ∈ cpt such
p(b) = 0, so b is also a root, and not (3) implies not (2). □

When critical values exist, they create a cell structure on the annulus.

Definition 3.11 (Critical values and rectangles). Let p be a complex polynomial
and let cvl be its set of critical values. If p has distinct roots and degree at least
2, then cvl is a non-empty finite subset of C0 (Proposition 3.10). As described in
Definition 1.4, this subset of C0 is sent by iA to a non-empty subset of Aint. By
Definition 1.9, this subset determines cell structures for I, S and A = S× I, which
we denote Ip, Sp and Ap, respectively.

4. Polynomials and Branched Annuli

This section defines our main object of study: the branched annulus of a polyno-
mial with distinct roots. We begin by recalling the topology of polynomial maps.

Proposition 4.1 (Polynomial maps). For every polynomial p ∈ Polyd(C) , the
map p : C → C is a local homeomorphism away from cpt, and every point not in cvl
has an evenly covered neighborhood. In particular, if B ⊂ C is any set containing
cvl, then p restricts to a d-sheeted covering CC → CB, where C = p−1(B).

In other words, polynomial maps are branched covering maps with finitely many
branch points. It is helpful to study this branching behavior using the graph of the
modulus function.

Definition 4.2 (Modulus surface). Let p ∈ Polyd(C) be a polynomial and let
p : C → C be the corresponding polynomial map. The modulus surface of p is the
graph of the function |p| : C → R which sends z 7→ |p(z)|. This is a surface in C×R,
formed by the points {(z, |p(z)|) | z ∈ C}, and it is smooth except possibly near the
roots. Near a root with multiplicity 1, the modulus surface looks like a cone. The
roots live in the plane C × 0 and the remainder of the modulus surface is in the
half space above this plane. The graph of the restricted function |p0| : Crts → R, is
the restricted modulus surface and its level sets are called lemniscates.

Remark 4.3 (Compactifying the modulus surface). One inconvenience when study-
ing the restricted modulus surface is that both the domain and range are non-
compact. This can be fixed by homeomorphically mapping Crts into a compact
disk D, mapping R into an compact interval I, and then metrically completing the
resulting bounded surface contained inside the solid cylinder D× I.

The branched annulus introduced here is an alternative way to compactify the
restricted modulus surface. The first step is to define a bounded metric on Crts.

Definition 4.4 (Pullback metrics). If Y is a topological surface, X is a Riemannian
surface, and f : Y → X is a branched cover with a finite branch locus, then there is
a unique pullback metric on Y that makes f a local isometry wherever it is a local
homeomorphism. Concretely, call a curve in Y rectifiable if its image under f is
rectifiable inX, define the length of a rectifiable curve in Y by the length of its image
in X and define the distance between points in Y to be the infimum of the lengths
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C Crts Bp Bp

C C0 A Ap

p p0

iB

pA p

iA

Figure 5. Maps related to the complex polynomial p. The four
vertical maps, from left to right, are the original polynomial map
p, which is a branched cover of C, the restricted polynomial map
p0, which is a branched cover of C0, the compact metric version
pA, which is a branched cover of the annulus A, and the metric
cellular version p, which is a branched metric cellular map between
rectangular 2-complexes.

of rectifiable curves connecting them. This defines a metric on Y that makes f a
local isometry in any neighborhood where f was already a local homeomorphism,
while also providing equal treatment to all points in Y . Its uniqueness follows from
the local isometry requirement.

Note that pullback metrics are distance non-increasing as an immediate conse-
quence of their definition.

Definition 4.5 (Branched annulus). Let p ∈ Polyd(C) be a polynomial with
distinct roots. The open branched annulus of the polynomial p is the topological
space Crts endowed with a pullback metric via the map iA ◦ p0 : Crts → A, and the
(closed) branched annulus is the metric completion of the open branched annulus.
We write Bint

p for the open branched annulus, Bp for the branched annulus, and
iB : Crts → Bp for the natural inclusion map which restricts to a homeomorphism

between Crts and Bint
p . Finally, since the map iA◦p0◦i−1

B : Bint
p → A is distance non-

increasing, it sends Cauchy sequences to Cauchy sequences, and thus it continuously
extends to a map pA : Bp → A. See Figure 5.

It turns out that the branched annulus Bp is always a compact surface with
boundary whose interior is the open branched annulus Bint

p , hence our choice of
notation. These properties are established later in the section. For now we merely
record the elementary properties of the open branched annulus Bint

p .

Proposition 4.6 (Open branched annulus). For any polynomial p ∈ Polyd(C)
with distinct roots, the open branched annulus Bint

p is a connected genus 0 surface
that is locally Euclidean away from a finite set of critical points. It has area 4πd
and its diameter is bounded.

Proof. The open branched annulus Bint
p is a connected genus 0 surface because its

topology is the same as Crts. It is locally Euclidean almost everywhere since it is
a branched cover of A with finite branch locus and A is locally Euclidean. It has
total area 4πd since the map is a local isometry and a d-sheeted covering of a space
with area 4π, once finitely many points have been removed from the domain and
range (Propostion 4.1). And finally, a connected finite-sheeted cover of a bounded
diameter metric space, has bounded diameter. □

To understand the metric completion of an open branched annulus, note that a
Cauchy sequence with missing limit point in the open branched annulus Bint

p must
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approach the “boundary” of the underlying topological space Crts. In other words,
such a sequence either approaches a root or it heads off to infinity (in the old metric).
The image of such a sequence under the map pA approaches ∂A = Lat−1 ∪ Lat1.

Remark 4.7 (Near a root). Let p ∈ Polyd(C) be a polynomial with distinct roots.
Since 0 is not a critical value (Proposition 3.10), there is a small neighborhood C
of 0 that is evenly covered by p (Proposition 4.1). Let a ∈ rts be a root and let B
be the connected component of p−1(C) containing a. Since the map iA ◦ p0 sends
the deleted neighborhood B \ {a} homeomorphically to the lower portion of the
open annulus Aint, the metric completion of Bint

p in the neighborhood of the root a
involves adding a copy of the boundary circle Lat−1, as happens when metrically
completing the lower part of Aint to get A. In particular, d distinct circles of length
2π are added to the open branched annulus, one for each of the d roots in rts, and
in each case, the portion of Bint

p near this boundary circle is the interior of Bp near
this circle. We call these boundary circles root circles.

Remark 4.8 (Near infinity). Let p ∈ Polyd(C) be a polynomial with distinct
roots and note that the points in C that are “near infinity” are sent by iA ◦ p0 to
points that are near the boundary circle Lat1 ∈ A. If A is an open neighborhood
of Lat1 ∈ A that is disjoint from iA(cvl), then the restriction of iA ◦ p0 to the
preimage of A ∩ Aint is a d-sheeted cover of this annular region (Proposition 4.1).
It is also path-connected since it contain all points in C sufficiently far from the
origin. The only possibility is that (iA ◦ p0)

−1(A ∩ Aint) is an open topological
annulus that is sent to the open annulus A ∩ Aint by a map that wraps around d
times. As a consequence, a single circle S(d), of length 2πd, is added to Bp “near
infinity” and the portion of Bint

p near this boundary circle is the interior of Bp near
this circle. We call this the circle at infinity, since it is reminiscent of the standard
compactification of the complex plane. Note that this agrees with the intuition that
polynomials near infinity are increasingly dominated by their leading term.

The following proposition records the consequences of these remarks.

Proposition 4.9 (Branched annulus). For any polynomial p ∈ Polyd(C) with
distinct roots, the branched annulus Bp is a compact connected genus 0 surface with
boundary and the map pA : Bp → A is a branched cover with a finite set of branch
points in its interior. The interior of the surface Bp is the open branched annulus
Bint
p and its boundary consists of d+1 circles. There are exactly d circles of length

2π that are all sent to lower boundary circle Lat−1 in A and one circle S(d) of
length 2πd that is sent to the upper boundary circle Lat1 in A.

This nearly completes the proof of Theorem A. Since locally Euclidean implies
locally CAT(0), it only remains to show that the branched annulus is also locally
CAT(0) in the neighborhood of a branch point. This is straightforward to show
directly and even more clear once we introduce a cell structure.

Definition 4.10 (Cell structure). Let p ∈ Polyd(C) be a complex polynomial with
distinct roots and let pA : Bp → A be corresponding branched cover of the annulus
A. If the degree d of p is at least 2, then p has at least one critical value and
iA(cvl) is not empty. Recall that Ap denotes the closed metric annulus A = S× I
with rectangular cell structure Ap = Sp × Ip determined by the non-empty set
iA(cvl) (Definition 3.11). The open cells of this cell structure partition Ap and
the components of their preimages under the map pA partition Bp. In fact, these
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components endow Bp with its own cell structure. To see this, note that the new
0-skeleton is simply the full preimage of the 0-skeleton of Ap. And since the branch
points of the map are sent to vertices of Ap, by the definition of its cell structure,
every open 1-cell or open 2-cell in Ap is evenly covered by d disjoint subsets of Bp

that are exact copies of this open 1-cell or open 2-cell. Finally, the topology of
the branched cover ensures that the attaching maps behave as expected. We write
Bp to denote the branched annulus Bp together with this “pulled back” metric cell
structure derived from the map to Ap, and we write p : Bp → Ap for the metric
cellular map from Bp to Ap. See Figure 5.

Remark 4.11 (Boundary of Bp). Recall from Definition 3.11 that the two bound-
ary circles of Ap are isomorphic copies of Sp. In Bp, the d root circles are copies
of Sp and the circle at infinity is a copy of Sp(d) as defined in Definition 1.11.

In Bp, the 2-cells are metric rectangles, the 1-cells are metric line segments, and
each 1-cell is incident to exactly two 2-cells, so all of the interesting structure occurs
near the 0-cells. We call a vertex in Bp critical if it is in iB(cvl) and regular if not.

Lemma 4.12 (Regular vertices). A regular vertex of Bp has valence 3 if it is in
the boundary and valence 4 if it is in the interior.

Proof. When v is a regular vertex in Bp, p is a local homeomophism near v by
Proposition 4.1, so the valence at v is equal to the valence of its image p(v) ∈ Ap.
The values listed are those for the rectangular cell structure on Ap. □

Lemma 4.13 (Critical vertices). If b ∈ Crts is a critical point for p with multiplicity
k, then its image b = iB(b) is a critical vertex in Bp of valence 4(k + 1).

Proof. Since b is a critical point of multiplicity k, p′(z) = (z − b)kq(z) for some
polynomial q(z) with q(b) ̸= 0. By Proposition 3.7, p(z) = p(b)+

∫ z

b
(w−b)kq(w)dw.

When z ≈ b, q(z) ≈ q(b) and the integral is approximately q(b)
∫ z

b
(w−b)k dw. Thus,

p(z) ≈ p(b) + q(b)
k+1 (z − b)k+1. In particular, in a small neighborhood of the b, p is,

roughly speaking, a shifted and rescaled version of z 7→ zk+1. Because p(b) is in
the interior of Ap, it has valence 4 and this means that b has valence 4(k+1). □

Since the 2-cells in Bp are metric rectangles, the valence information in Lem-
mas 4.12 and 4.13 immediately implies that Bp, and the underlying metric space
Bp, are locally CAT(0). This proves the following proposition and completes the
proofs of Theorems A and B.

Proposition 4.14 (Locally CAT(0)). For every polynomial p with distinct roots
and degree at least 2, the compact surface Bp is locally CAT(0).

5. Drawing a Branched Annulus

The process used to draw the vertical annulus A inside the closed unit disk D
can be slightly modified to draw the branched annulus Bp inside the same disk.

Definition 5.1 (Drawing Bp inside D). Pick small numbers α > β > 0 and define
the extended map Hϵ : C0 → C0 as described in Definition 2.1 with ϵ = β/α. In
particular, choose α small enough so that the disk of radius α centered at the
origin is evenly covered by the polynomial p. Then the slight perturbation Hϵ

inside the deleted neighborhood of the origin can be simultaneously lifted to similar
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Crts Crts C

B D

H̃ϵ

iB

i

iD

jBD

Figure 6. Drawing the branched annulus B inside the disk D.

slight perturbations around each of the deleted root neighborhoods in Crts. Let

H̃ϵ : Crts → Crts be this map where p0◦H̃ϵ = Hϵ◦p0. The composition iD ◦H̃ϵ◦i−1
B

maps the interior of the branched annulus homeomorphically to the open unit disk
with d small closed disks removed, and this homeomorphism extends to a well-
behaved embedding jBD : Bp ↪→ D between their metric completions. See Figure 6.
In particular, jBD homeomorphically embeds Bp into D and it agrees with the

metric completion of the map i−1
B ◦ iD except in small neighborhoods of the root

circles. We use this type of identification whenever we draw Bp inside D.

Example 5.2. Let p(z) = .02(3z5−15z4+20z3−30z2+45z) as in Example 3.4. The
planar drawings of Bp and Ap are shown in Figure 7. The critical longitudes and
latitudes in Ap are drawn in color and greyscale respectively, and their preimages
in Bp are shaded accordingly.

Remark 5.3 (Multipedal pants). The drawing of the branched annulus Bp in the
disk D can be lifted to a surface in the solid cylinder D× I by adding in the height
of a point under the map Bp → A → I as a third coordinate. The root circles lie
in the disk at the bottom of the cylinder, the circle at infinity is boundary of the
disk at the top, and the level sets are the horizontal cross-sections. For quadratic
polynomials, this surface will be the “pair of pants” familiar to topologists and in
general, a polynomial of degree d will produce a pair ofmultipedal pants designed for
a being with d legs. An example of a 3-legged pair of pants for a cubic polynomial
is shown in Figure 8.

6. Level Sets and Direction Sets

In the remainder of the article we turn our attention to the large amount of in-
formation encoded in the metric rectangular complex Bp. Latitudes and longitudes
provide a pair of transverse measured foliations for A, and their preimages under pA
provide a pair of (singular) transverse measured foliations for Bp with singularities
at the critical points of p. The leaves of each pullback foliation can be written as
metric graphs via the cell structure for Bp and these provide valuable combinato-
rial data associated to the polynomial p. This section explores the geometry and
topology of these preimages.

Definition 6.1 (Level sets and direction sets). By composing the polynomial
pA : Bp → A with the projections hgt : A → I and arg : A → S, we obtain maps
Bp → I and Bp → S. For each t ∈ I or u ∈ S, define the level set of height

t by Lvlt = p−1
A (Latt) = (hgt ◦ pA)−1

(t) and the direction set of argument u

by Diru = p−1
A (Longu) = (arg ◦ pA)−1

(u). Since pA is a proper map, each of
these preimages is a compact subset of Bp, and note that the restricted maps
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p

Figure 7. The metric cellular map p from the metric rectangular
2-complex Bp to the compact annulus Ap with its metric rectan-
gular cell structure. Both the domain and the range are embedded
in the unit disk, even though this process distorts their intrinsic
metrics.

hgt◦pA : Lvlt → S and arg◦pA : Diru → I are discretely branched covers. We say
that Lvlt (or Diru) is critical when its image is a critical latitude (or longitude),
and regular otherwise. Each latitude circle and longitude line can be made into a
metric graph by intersecting it with the cell structure for Ap, and the results are
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isomorphic to Sp and Ip respectively. In the same way, each level set Lvlt and direc-
tion set Diru inherits a cell structure from Bp, turning each of them into a metric
graph and making the restricted maps pA : Lvlt → Latt and pA : Diru → Longu

into metric cellular maps. Note, however, that the cell structures for Lvlt and Diru

are subcomplexes of Bp if and only if they are critical.

While level sets are topologically equivalent to the usual definition for polynomial
lemniscates, the metric is different.

Remark 6.2 (Lemniscates). For a polynomial p, the subset {z ∈ C | |p(z)| = r}
in C is known as a polynomial lemniscate and its image under the inclusion map
iB is the level set described above. While these two objects are homeomorphic, it
is important to remember that the bounded metric on Bp differs from the standard
metric on C. For example, Erdős, Herzog, and Piranian asked whether the lemnis-
cate {z ∈ C | |p(z)| = 1} has maximum length when p the polynomial p(z) = zd−1,
and this problem has remained open for over sixty years [EHP58]. On the other
hand, every level set in Bp has total length 2πd.

It is easy to provide a precise geometric description of the regular level sets and
regular direction sets, but the critical versions require a bit more exposition. We
begin with an elementary example.

Example 6.3 (One critical value). Let p(z) = a(z − b)d + c with a, c ∈ C0 and
b ∈ C. As described in Example 3.5, b is the unique critical point for p, c is the
corresponding unique critical value, and p has distinct roots since c is nonzero.
Since there is only one critical point, Sp has 1 vertex and 1 edge, while Ip has 3
vertices and 2 edges. Let t and u denote the height and argument of iA(c) in A,
respectively. Figure 8 shows the multipedal pants version of Bp when d = 3, along
with its unique critical level set Lvlt and unique critical direction set Diru. Each
level set has total length 2πd and there are two regular isometry types: Lvls is the
disjoint union of d copies of Sp when s < t and Lvls is isometric to Sp(d) when
s > t. The unique critical level set for p occurs at height t and is isometric to
the d-fold wedge sum of d copies of Sp. Meanwhile, each regular direction set is
isometric to the disjoint union of d copies of Ip and the unique critical direction
set may be written as the wedge sum of d copies of Ip. This critical direction set
occurs at argument u and has the structure of a metric tree with 2d leaves, each of
which is connected via an edge to a single non-leaf vertex. Half of these edges have
length t while the rest have length 2 − t, and the two types alternate in the local
cyclic ordering around the non-leaf vertex.

By Lemma 4.13, Example 6.3 also describes the generic local picture for what
level sets and direction sets look like near the image of a critical point in Bp. We
begin with the regular case.

Lemma 6.4 (Product preimages). Let T ⊂ I and U ⊂ S be connected subsets
such that the product region T × U ⊂ A is disjoint from iA(cvl). If U is a proper
subset of S, then the preimage p−1

A (T × U) has d connected components, each of
which is isometric to the rectangle T ×U . If U = S, then there are positive integers
k1, . . . , km with k1 + · · ·+ km = d such that the preimage p−1

A (T × U) is isometric
to the disjoint union of annuli (T × S(k1)) ⊔ · · · ⊔ (T × S(km)).

Proof. First, note that the restricted map pA : p−1
A (T × U) → T × U is a d-fold

covering map and a local isometry. If U is a proper subset of S, then T × U



GEOMETRIC COMBINATORICS OF POLYNOMIALS I 17

Figure 8. The branched annulus for a cubic polynomial of the
form described in Example 6.3, along with its unique critical level
set and direction set.

is simply-connected and thus the preimage under pA must consist of d isometric
copies of T × U . If U = S, then T × U is an annulus of circumference 2π, so each
connected component of the preimage is an annulus with circumference equal to an
integer multiple of 2π. □

Note that the rectangles and annuli described might be degenerate if T or U
(or both) is only a single point. Next, we add in the cell structure. Recall that
Ap = Ip × Sp. By composing p : Bp → Ap with the projection onto either factor,
there are natural cellular maps from the branched annulus to the interval and
to the circle. The preimages of open edges under these compositions can easily be
characterized, providing a concrete description of both regular level sets and regular
direction sets. The following two results are immediate consequences of Lemma 6.4.

Lemma 6.5 (Regular level sets). If T is an open edge in Ip, then its preimage in
Bp is a union of disjoint annuli, and each annulus is a direct metric product of the
open edge T with a finite-sheeted cover of Sp. More precisely, there exist positive
integers k1, . . . , km with k1 + · · ·+ km = d such that the preimage of T is a disjoint
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union of annuli (T ×Sp(k1))⊔· · ·⊔ (T ×Sp(km)). As a consequence, for each point
t ∈ T , the regular level set Lvlt looks like Sp(k1) ⊔ · · · ⊔ Sp(km) and its metric cell
structure is independent of the choice of t ∈ T .

Lemma 6.6 (Regular direction sets). If U is an open edge in Sp, then its preimage
in Bp is a union of d disjoint rectangles, and each rectangle is a metric product
of Ip and the open edge U . As a consequence, for each point u ∈ U , the regular
direction set Diru looks like Ip⊔· · ·⊔Ip and its metric cell structure is independent
of the choice of u ∈ U .

Removing a regular direction set leaves a branched cover of a rectangle.

Lemma 6.7 (Removing a regular direction set). Let T be an open edge in Sp.
When the preimage of T × Ip under p is removed from the branched annulus Bp,
the result is a contractible, connected branched cover of the rectangle Ap \ (T × Ip).

Proof. By Lemma 6.5 the inverse image of the strip T × Ip under p consists of
d disjoint copies of the strip, with each copy connecting a T -edge in a root circle
to one of the d T -edges in the circle at infinity. Moreover, distinct strips start at
distinct root circles, since each root circle has a unique edge sent to the copy of
T in Lat−1. The fundamental group of the branched annulus Bp is a rank d free
group generated by loops running around the root circles, but each strip that is
removed cuts the surface and reduces the rank of this free group. The final surface
is connected and contractible with a single boundary cycle, and it is a branched
cover by Proposition 4.1. Notice that when Sp has only one edge, the ‘rectangle’
Ap \ (T × Ip) is degenerate, being only a single copy of Ip. The result still holds,
but the ‘surface’ degenerates into a planar tree. □

Critical level sets and critical direction sets are more complicated due to the
branch points. A connected component of a critical level set is a special type of
metric graph that we call a metric cactus. A metric cactus may be of the form
Sp(k), as in the regular case, but it can also contain branch points, as in Figure 8.

Definition 6.8 (Metric cacti). A cactus diagram is a contractible 2-dimensional
cell complex embedded in the plane where each edge lies in the boundary of a
unique 2-cell. As a consequence of these restrictions, the boundary of an open 2-
cell is a (simple) cycle, disjoint open 2-cells have closures that intersect in at most
one point, and the closed 2-cells are assembled in a “tree-like” fashion. In graph
theory a cactus is a graph where every edge belongs to a unique cycle, and the
1-skeleton of a cactus diagram is an example. Note that loops and multiple edges
are permitted. Actually, the 1-skeleton of a cactus diagram can be viewed as a
directed graph by giving a counter-clockwise orientation to the boundary cycle of
each 2-cell. Let S be a circle of length 2π with a fixed cell structure and consistently
oriented edges. If Γ is a branched cover of S and it is also the oriented 1-skeleton
of a cactus diagram, then we call Γ a metric cactus. Note that every simple cycle
in Γ is a copy of S(k) for some positive integer k.

Cactus diagrams and cactus graphs appear in [Nek14], but it is worth noting that
they are put to a different use. Cactus cycles in [Nek14] correspond to post-critical
points of p, whereas ours are closely connected to roots.

Lemma 6.9 (Critical level sets). Inside Bp, every component of every level set is a
metric cactus. Moreover, each critical point of multiplicity k labels a cactus vertex
of valence 2(k + 1) and it belongs to exactly k + 1 distinct cycles.
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Proof. The topological part of the proof is Morse-theoretic. For each r ≥ 0, let
C(r) = {z | |p(z)| ≤ r} ⊂ C. When r is positive, we upgrade C(r) from a topological
subset of the plane to a planar cell complex by giving its boundary the cell structure
of the corresponding critical level set in Bp. Note that every connected component
of C(r) is contractible since a bounded complementary component would lead to
a contradiction of the Maximum Modulus Principle. In particular, as r continues
to increase, the bounded region eventually must disappear and the final points to
disappear will be isolated since the critical points of p are discrete. Such points
would have a locally maximal modulus, thus provoking a contradiction. When
r = 0, C(r) is the discrete set of roots and as r increases, it immediately becomes
a set of d disjoint closed topological disks. Note that each connected component is
a cactus diagram with only one 2-cell. As r increases further, some of the growing
closed disks intersect precisely when r has the magnitude of a critical point of p.
When this happens the local picture is governed by Lemma 4.13. This establishes
the valence requirements and the closed disks only overlap at isolated points because
the critical values of p are discrete. Thus, C(r) remains a cactus diagram during
this transition. As a branched cover of Sp and the 1-skeleton of a cactus diagram,
the critical level set corresponding to ∂C(r) is a metric cactus. As r increases
further, annuli are attached to the boundary cycles of the connected components,
and the space C(r) returns to being a disjoint union of closed topological disks, but
now with strictly fewer connected components. Proceeding in this way shows that
every level set is a metric cactus. □

Remark 6.10 (Multipedal pants and cactus diagrams). An alternative way to
visualize the union of cactus diagrams that level sets bound is to use the embedding
of Bp as a multipedal pair of pants inside D× I. The pair of pants have an “inside”
and an “outside”. If you add disks to the portions of horizontal slices that are on
the “inside”, then the result is a union of cactus diagram. The critical level sets
corresponding and the corresponding cactus diagrams for our running example are
shown in Figure 9, together with the two extreme level sets at top and bottom the
solid cylinder.

A connected component of a critical direction set is a special type of metric tree
that we call a metric banyan. A metric banyan may be of the form Ip, as in the
regular case, but it can also contain branch points, as in Figure 8.

Definition 6.11 (Banyan trees). Let I be a compact metric interval with a fixed cell
structure and with oriented edges consistently pointing towards one of its endpoints.
A metric banyan tree is a contractible branched cover of I together with a fixed
embedding in the plane so that the incoming and outgoing edges strictly alternate
in the clockwise cyclic order around one of its internal vertices. Notice that every
point in a metric banyan has a well defined height given by its projection to I. A
vertex of a metric banyan tree is called a source, sink or interior vertex based on
its image in I.

Remark 6.12. The choice of name “banyan tree” is inspired by the behavior of the
real-life version, where branches grow off-shoots heading both towards and away
from the ground. By adding the well-defined height as a third dimension, one may
notice that the lifts of the planar trees described above mimic this behavior.
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Figure 9. The critical horizontal slices of the branched annulus
Bp as embedded in D× I, together with its two extreme level sets
at the top and bottom of the solid cylinder.

Lemma 6.13 (Critical direction sets). Inside a branched annulus Bp, every com-
ponent of every direction set is a metric banyan. Moreover, each critical point of
multiplicity k labels an interior banyan vertex of valence 2(k + 1).

Proof. By Proposition 4.1, every singular component of a direction set is a branched
covering of Ip. The planar embedding, the local alternation of incoming and out-
going edges, and the valence requirement are all immediate, since the local picture
near a branch point is governed by Lemma 4.13. It only remains to show that every
component is contractible and thus a tree. This is clear for regular direction sets
by Lemma 6.5, so we only need to consider the critical ones. Let T be an open edge
in Sp and consider the inverse image of the strip T × Ip under p. By Lemma 6.7,
removing these d strips results in a connected and contractible branched cover of
a rectangle. If we repeat this process for each other open edge in Sp, then these
additional “cuts” increase the number of connected components, but each compo-
nent remains simply connected. After all such strips have been removed, all that
remains is the disjoint union of all critical direction sets. This shows that every
component of every critical direction set is simply connected and contractible. □
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We conclude this section with two brief remarks that will be explored in greater
depth in future articles by the authors. The first remark highlights the underlying
similarity between banyan trees and cacti.

Remark 6.14 (Banyan and cactus conversions). Let Γ be a level set of Bp and let
T be an open edge in Sp. Then removing the preimages of T × Ip (as described in
Lemma 6.7) from Bp removes d open edges from Γ; one can show that the resulting
metric graph is a metric banyan. Conversely, if Γ is a direction set of Bp and T
is an open edge in Sp, then removing the preimages of T × Ip turns Bp into a
4d-gon that is a connected d-fold branched cover of the rectangle Ap \ (T × Ip)
(Lemma 6.7). Every fourth side of the 4d-gon contains a source vertex of Γ, every
fourth side of the 4d-gon contains a sink vertex of Γ and none of these 2d sides are
adjacent. One can add a collection of d isometric metric edges to Γ connecting each
source vertex to the “next” sink vertex in the counter-clockwise order. This can
be done simultaneously in a plane and the result is a graph where each component
is a metric cactus. This close connection between metric banyans and metric cacti
is less surprising once one uses Lemma 6.7 to restrict a branched annulus to a
branched rectangle. There is an obvious symmetry between the horizontal and
vertical foliations of the rectangle and this produces a symmetry between metric
banyans and restricted portions of metric cacti.

The second remark focuses on realizability.

Remark 6.15 (Banyan and cactus realizations). One can prove stronger versions of
Lemma 6.9 and Lemma 6.13 that include an assertion about the converse direction.
Concretely, after adding mild and obvious restrictions, every metric cactus and
every metric banyan arises as a component of a level set or a direction set for some
complex polynomial p.

7. Partitions

The branched annulus of a complex polynomial contains a wealth of combinato-
rial (and geometric) data encoded in its level sets and direction sets. In this section
we extract some of this combinatorial data and highlight an intrinsic connection
between the geometry of complex polynomials and the combinatorics of noncrossing
partitions. We begin with partitions.

Definition 7.1 (Partitions). Let A be a set of size d. A partition of A is a collection
of pairwise disjoint subsets (called blocks) whose union is A. Let ΠA denote the
set of all such partitions. Given partitions λ, µ ∈ ΠA, λ is a refinement of µ if each
block of λ is contained in some block of µ. When this occurs we write λ ≤ µ, or
λ < µ when λ and µ are not equal. This defines a partial order which makes ΠA

into a lattice since meets and joins are well-defined. The unique minimum partition
is the discrete partition where every block is a singleton, and the unique maximum
partition is the trivial partition where there is only one block. A chain of partitions
is a sequence λ1 < · · · < λk.

The focus here is on Πrts, the partition lattice of the roots of p.

Definition 7.2 (Partitions from level sets). As described in the proof of Lemma 6.9,
for every t ∈ Iint, the level set Lvlt of p can be viewed as the boundary of a disjoint
union of cactus diagrams in C and every root is contained in the interior of one of
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these diagrams. We define a partition λt by placing two roots in the same block
if and only if they are contained in the same connected component, i.e. the same
cactus diagram. Note that as t increases, the cactus diagrams grow and merge but
they do not split, and, as a consequence λt can only increase in the partial order
on Πrts.

Remark 7.3 (Regular level sets as separating multicurves). A multicurve is a dis-
joint union of simple closed curves on a given (connected) surface, and a multicurve
is separating if its complement is disconnected. Since each latitude Latt in the open
annulus Aint disconnects the (closed) annulus A, its preimage Lvlt separates Bp.
Moreover, when t is regular, Lvlt is a separating multicurve. The partition λt can
then be viewed as having blocks where two roots belong to the same block if and
only if the corresponding root circles belong to the same complementary component
of Lvlt.

Remark 7.4 (Partitions and Ip). For every point t ∈ Ip there is a partition λt ∈
Πrts. As is usual in Morse theory, the cactus diagrams remain homotopic so long as
t does not increase through a critical value. Thus every point in an open edge of Ip
is assigned the same partition, and this partition agrees with the partition assigned
to its lower endpoint. Moreover, the partition assigned to the first open edge (with
−1 as an endpoint) is the discrete partition and the partition assigned to the last
open edge (with 1 as an endpoint) is the trivial partition. On the other hand, as
t approaches an interior vertex of Ip from below, there are distinct components
that are merging together, which means that the partition assigned to this interior
vertex is strictly higher inside Πrts compared to the partition assigned to the open
edge directly below it. As a consequence, the partitions assigned to the open edges
of Ip are distinct representatives of every partition assigned to a level set, and they
naturally form a chain in Πrts.

We give two examples.

Example 7.5. Let p(z) = a(z − b)d + c be as in Example 6.3, and let t be the
height of iA(c), its unique critical value. There are only two open edges in Ip. The
partition assigned is discrete on the half-open interval [−1, t) and trivial on the
closed interval [t, 1]. Thus the chain of partitions is simply: Discrete < Trivial.

Example 7.6. The critical level sets for our standard running example are shown
in Figure 10. As should be clear from the figure, the associated chain in Πrts is:

Discrete < {{a1, a2}, {a3}, {a4}, {a5}} < {{a1, a2, a4, a5}, {a3}} < Trivial.

Remark 7.7 (Big lemniscate configurations). The chain of partitions produced by
the regular level sets of p is a natural combinatorial object, although we are unaware
of any explicit references to it in the literature. It is worth noting that this chain is
related to what Catanese and Paluszny refer to as a “big lemniscate configuration”
in [CP91], although they restrict their consideration to the lemniscate-generic case,
where the combinatorics are simpler. A lemniscate-generic polynomial of degree d
has d− 1 distinct critical values, all of multiplicity one, and these critical values all
have distinct moduli. The cell structure of Ip, in this case, has d open edges and
the associated chain in Πrts is a maximal chain.

With a little more work, the chain of partitions determined by the regular level
sets of Bp can be converted into a chain of noncrossing partitions.



GEOMETRIC COMBINATORICS OF POLYNOMIALS I 23

1 2 3

4

5

1 2 3

4

5

p

Figure 10. The union of all critical level sets in the branched
annulus Bp. The regular level sets between them determine a
chain in Πrts.

Definition 7.8 (Noncrossing partitions). Let A be the vertices of a convex d-gon
in the plane. A partition λ ∈ ΠA is noncrossing if for every pair of distinct blocks
in λ, the convex hull of the vertices in one block is disjoint from the convex hull of
the vertices in the other. The collection of noncrossing partitions inside ΠA form
an induced subposet. We write NCA for this subposet, where A is now viewed as
a set with a fixed cyclic ordering. If A is any finite set of size d and we fix a cyclic
ordering of its elements, then we can use this cyclic ordering to label the vertices
of a d-gon and then create an induced noncrossing subposet of ΠA.

Lemma 7.9 (Open edges and cyclic orderings). If u ∈ Sp is not a vertex, then
Diru is a regular direction set, and Diru determines a natural cyclic ordering of
the roots of p. In addition, points in the same open edge of Sp determine the same
cyclic ordering of rts.
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Proof. Let U be the open edge of Sp that contains u. The preimage of the strip
U × Ip ⊂ A consists of d disjoint rectangular strips in Bp. Each strip connects a
unique copy of U on a root circle to one of d copies of U on the circle at infinity.
The bijection from roots to root circle thus extends to copies of U in the circle at
infinity. And note that the same bijection is produced if we use only use the regular
direction set Diru for any u ∈ U . Reading counter-clockwise around the circle at
infinity thus produces a cyclic ordering of the set rts of roots. □

We illustrate the cyclic ordering of the roots using our running example.

Example 7.10 (Cyclic orderings). In our running example, there are four open
edges in Sp and thus four cyclic orderings of the roots. For readability, we label the
five roots a, b, c, d and e instead of a1, a2, a3, a4 and a5, respectively. Starting at the
positive x-axis and proceeding counter-clockwise around the boundary, these four
cyclic orderings are: (c, a, d, e, b), (c, d, a, e, b), (b, d, a, e, c), and (b, d, e, a, c). See
Figure 11. In the electronic version of this article, where the colors are visible, the
first cyclic ordering is determined by the regular direction sets sandwiched between
the critical direction sets that are aqua and dark blue, respectively. The second is
between dark blue and red, the third is between red and green and the fourth is
between green and aqua.

By combining the combinatorial information coming from a regular direction set
with that coming from a regular level set we can see that all of these root partitions
are noncrossing.

Proposition 7.11 (Level sets and noncrossing partitions). The partition of the
roots determined by a regular level set is noncrossing with respect to the cyclic
ordering of the roots determined by a regular direction set.

Proof. Fix u ∈ Sp and t ∈ Ip so that neither one is a vertex. By Lemma 7.9, u
determines a corresponding cyclic ordering of the set rts and by Definition 7.8 this
determines a subposet NCrts inside Πrts. Let C be the union of the latitude circle
Longt and the longitude line Latu, and let B = p−1

A (C). A connected component
of B contains both the 1-skeleton of a single cactus diagram, and the lines that
connect some of the root circles to preimages of u in the circle at infinity. These
connected components show how to view a block of the partition λt as a collection
of preimages of u in the circle at infinity. Since all of the components of B are drawn
in the disk without crossing, the convex hulls of the collections of points in the circle
at infinity also do not cross. In particular, λt is in the subposet NCrts. □

The following corollary is now immediate.

Corollary 7.12 (Chains of noncrossing partitions). The chain of partitions deter-
mined by the regular level sets is noncrossing with respect to the cyclic ordering of
the roots determined by any regular direction set.

Remark 7.13. It is worth noting that connections between complex polynomials
and noncrossing partitions have appeared elsewhere in the literature (e.g. [MSS07]
and [Sav09]), although in slightly different manners. We are unaware of any previ-
ous results in the literature that are similar to Proposition 7.11 and Corollary 7.12.
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Figure 11. The union of all critical direction sets in the branched
annulus Bp. The regular level sets between them determine four
different cyclic orderings of the set rts.

8. Factorizations

We now shift our attention from the chain of noncrossing partitions determined
by the collection of regular level sets to the factorization of a d-cycle determined
by the collection of regular direction sets. As a first step we note that the cyclic
orderings described in Lemma 7.9 can be converted to linear orderings by focusing
on a particular edge in the circle at infinity.

Definition 8.1 (Linear orderings). Let U ′ be an open edge in the circle at infinity
in Bp and let U be the open edge Sp to which it projects. First label the preimages
of U in the circle at infinity using the bijection from Lemma 7.9. Starting at U ′

and proceeding in a counter-clockwise fashion, we record the linear order in which
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the root labels occur. We use square brackets, rather than parentheses, to indicate
that this is a linear ordering rather than a cyclic ordering.

The various linear orderings of the roots determined by the edges in the circle
at infinity, can be used to create a sequence of permutations whose product is an
d-cycle. We begin by showing how that works in our running example.

Example 8.2. The circle at infinity in our running example has 20 open edges.
Using the same conventions as in Example 7.10, we have, for the edge in the domain
in the first quadrant with one endpoint on the positive real axis, the linear order
is [c, a, d, e, b]. Then next several linear orders, proceeding in a counter-clockwise
fashion, are [c, d, a, e, b], [b, d, a, e, c], [b, d, e, a, c] and [a, d, e, b, c]. There are 15 more
linear orders. Of course, the fifth linear order is just a cyclic permutation of the
first since they correspond to the same set of cyclically ordered edges. Adjacent
linear orders in this list give a description of a permutation of the set {1, 2, 3, 4, 5}
of positions in two line notation. The permutation from the first to the second
linear order is (2, 3) since the a and d entries in positions 2 and 3 are swapped.
The next permutation is (1, 5), swapping c and b, then (3, 4) swapping a and e, and
finally (1, 4) swapping a and b. Note that the product (with the appropriate choice
of conventions for multiplying permutations) is (1, 4)(3, 4)(1, 5)(2, 3) = (1, 2, 3, 4, 5)
as expected.

Remark 8.3 (Banyans and permutations). Given the fact that critical direction
sets separate adjacent linear and cyclic orderings, these permutations can actually
be read off of the corresponding banyan trees, specifically from the banyan trees
that include branch points. For example, the dark blue critical direction set has
only one branched component, the one with source vertices on the a1 = a and
a4 = d root circles. As a consequence, the difference between the first linear order
[c, a, d, e, b] and the second [c, d, a, e, b] involves a swapping of the roots a and d.

In order to describe the permutations these trees produce, we first introduce a
new noncrossing object, known in the literature as a primitive d-major.

Definition 8.4 (Real noncrossing partitions). Let d be a positive integer, let S(d) ⊂
C be the circle of radius d (and circumference 2πd), and let S(d) → S be the natural
covering map sending z 7→ (z/d)d. For each point u ∈ S, its d preimages are
equally spaced around S(d) and they form the vertex set of regular d-gon. Thus
we can define a noncrossing partition on the preimages of u. A real noncrossing
partition λ a choice of a noncrossing partition for each point u ∈ S subject to a
compatibility condition, which requires that the convex hull of every block of every
selected noncrossing partition can be simultaneously drawn inside the disk that S(d)
bounds, while remaining pairwise disjoint. One consequence of this compatibility
condition is that all but finitely many of the selected noncrossing partitions must
be the discrete partition. Note that the set of all real noncrossing partitions comes
with a natural partial order. One real noncrossing partition is less than or equal
to another if for each u ∈ S the noncrossing partition selected by the first is less
than or equal to the noncrossing partition selected by the second in the noncrossing
partition lattice based on the preimages of u.

Remark 8.5. Real noncrossing partitions have already appeared in the literature
with a different definition and under a different name. In [TBG+19] they are
called primitive d-majors. If each of the non-trivial convex hulls in the noncrossing
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partitions of a real noncrossing partition are shrunk to a point in a planar fashion,
the result is a cactus diagram with a metric cactus as its boundary. In fact, real
noncrossing partition are in natural bijection with metric cacti that are branched
d-fold covers of S.

Definition 8.6 (Banyans and real noncrossing partitions). For each u ∈ S, consider
the d points in Diru which lie on the circle at infinity. Define a partition of these
points so that two points belong to the same block if and only if they lie on the
same connected component of Diru. For regular direction sets, this is the trivial
partition. The proof that these partitions are noncrossing is essentially the same
as in the proof of Proposition 7.11. Since all of the components of Diru are drawn
in the disk without crossing, the convex hulls of the corresponding collections of
points in the circle at infinity also do not cross. This also shows that the noncrossing
partitions associated to different points u are compatible, so that the full banyan
foliation of Bp determines a real noncrossing partition associated to the polynomial
p.

The factorization of the d-cycle illustrated in Example 8.2 is closely related to
the real noncrossing partition of the banyan foliation. The following result precisely
describes the relationship, even though its proof is merely sketched.

Proposition 8.7 (Real noncrossing partitions and noncrossing hypertrees). Let λ
be the real noncrossing partition associated to the foliation of Bp by banyan trees. If
u ∈ Sp is a point that is not a vertex, then λ corresponds to a noncrossing hypertree
and a factorization of a d-cycle.

Proof sketch. Since u in not a vertex in Sp, the noncrossing partition associated
to u is discrete, and the preimages of u can be removed from the circle at infinity
without removing a vertex of a non-trivial block of λ. The remaining portions of
the circle at infinity consist of d open metric arcs of length 2π. Cyclically label
these arcs 1, 2, . . . , d. We use these numbers to label the vertices of each non-trivial
block in λ. If we collapse the open arcs to points while maintaining planarity, the
non-trivial blocks of λ will overlap on vertices and become a noncrossing hypertree.
The non-trivial blocks of λ can also be turned into cyclic permutations, and the
product of these permutations in the appropriate order produces the d-cycle. See
[McC17] for details. □

This completes the proof of Theorem C. We conclude the section with two
remarks on interpreting and using these results.

Remark 8.8 (Different noncrossing partitions). The factorization of a d-cycle pro-
duced by a noncrossing hypertree is a minimum reflection length factorization of a
d-cycle. There is a well-known connection between such factorizations and chains
in the noncrossing partition lattice NC[d] and this is another realization of this
connection. We should caution, however, that the chain in the noncrossing par-
tition lattice determined the regular level sets (and an edge in Sp) is not related
to the noncrossing partition lattice corresponding to a factorization of a d-cycle
determined by the linear orders coming from a consecutive sequence of edges in the
circle at infinity. This is easiest to see in the completely generic case where every
critical value has multiplicity one and all of their moduli and all of their arguments
are distinct. The chain in the partition lattice is determined by the linear ordering
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of the critical values by latitude, whereas the factorization of the d-cycle is deter-
mined, in part, by the cyclic ordering of the critical values by longitude. In a future
article, where we consider continuously varying a polynomial, it will be made clear
how one of these two can change while the other remains fixed.

Remark 8.9 (Dual braid complex). In a future article, we will give the space of
all real noncrossing partitions a natural topology and cell structure, and identify
this space with a version of the dual braid complex - see [Bra01], [BM10], and
[DMW20] for details on this complex. We will use this identification to prove that
the complexified hyperplane complement of the braid arrangement deformation
retracts to the pure version of the dual braid complex. The tools developed in this
article, and in our earlier work, will be crucial to our proofs.

9. Monodromy

In this final section we comment on the ways in which the monodromy action
can be read off from the structure of the branched annulus of p. Our discussion
here will be somewhat brief, since similar material was detailed by Elias Wegert in
a recent article in the Notices of the AMS [Weg20].

Definition 9.1 (Monodromy). Given a covering map f : Y → X and a point
x ∈ X, each oriented loop based at x lifts to a collection of directed paths in Y ,
and each path connects one preimage of x to another preimage of x, possibly the
same one. Thus, each loop can used to determine a permutation of the points in
the set A = f−1(x), these permutations are well-defined up to homotopies of paths,
and they compose as expected. The result is a group homomorphism from π1(X,x)
to SymA. This is the monodromy action of the fundamental group of X on the
preimages of x.

Remark 9.2 (Polynomial monodromy). In the case of a polynomial p : C → C
with d distinct roots, we know that p is a discretely branched covering map; the
restriction of p obtained by removing the critical values and their preimages is a
covering map, and thus it has a corresponding monodromy action. Since p has
distinct roots, 0 is not a critical value, and we may choose 0 to be the basepoint
in the image and the fundamental group π1(Ccvl, 0), is a free group whose rank is
equal to the number of critical values.

The monodromy action is encoded in the cell structure of the branched annulus.

Remark 9.3 (Monodromy and branched annuli). The lower boundary circle of the
annulus A corresponds to 0 in a precise sense, so we can replace directed loops based
at 0 with directed paths that start and end on Lat−1. The lifts of such paths will
start and end at root circles and thus define a permutation of the roots. Since every
branch point of the cellular map p : Bp → Ap is a vertex, it is sufficient to choose
paths which are suitably generic and transverse to the cell structure. These generic
paths avoid the 0-skeleton of Ap and lift to paths that avoid the 0-skeleton of Bp.
Every element of the free group π1(Ccvl, 0) has such a transverse representative
and the combinatorial nature of the cell structures involved make the permutation
determined by the lifts easy to determine.

We illustrate this idea with two simple examples.
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Example 9.4. In our running example, consider the path in C that starts at the
origin, increases along the positive real axis, circles the unique critical value on this
ray in a counter-clockwise fashion and then returns to the origin along the real axis.
In Ap there is an equivalent path that proceeds up the corresponding longitude,
circles around the critical value and then returns to Lat−1 along this longitude.
This path in Ap lifts to a set of 5 paths in Bp. The path that start on the a3 root
circle, returns to the a3 root circle, as do the paths that start on a4 root circle and
the a5 root circle. The path that starts on the a1 root circle ends on the a2 root
circle and vice versa. This is because of the branch point between them. Thus, the
corresponding permutation is (a1, a2).

And finally, we conclude with comment on a connection between the monodromy
and the structure of the banyan trees in Bp.

Example 9.5. Let u be a vertex in S and consider the path in Ap that starts
just to the right of the copy of u in Lat−1, travels straight up until its height
exceeds that of all the critical values on Longu, crosses over to the righthand side
of Longu and then returns straight down to the lefthand side of u in Lat−1. The
permutation determined by this path is the same as the noncrossing permutation
that corresponds to the noncrossing partition associated with the critical direction
set Diru as part of the real noncrossing partition associated to the polynomial p. In
particular, this permutation is completely determined by the structure of the non-
trivial banyan trees in the critical direction set Diru. Any other directed path in
Ap that stays close to the critical longitude Longu also determines a permutation
that can be read off of the structure of the metric banyan trees comprising the
critical direction set Diru.
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