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Abstract. The lattice of noncrossing partitions is well-known for its wide
variety of combinatorial appearances and properties. For example, the lattice

is rank-symmetric and enumerated by the Catalan numbers. In this article,

we introduce a large family of new noncrossing partition lattices with both of
these properties, each parametrized by a configuration of n points in the plane.

Introduction

For each subset P of the complex plane, a noncrossing partition of P is a way
of dividing P into subsets with pairwise disjoint convex hulls. The collection of
all noncrossing partitions of P , denoted NC(P ), is a partially ordered set under
refinement. When P is the vertex set for a convex n-gon, NC(P ) is the classical
noncrossing partition lattice NCn introduced by Kreweras [Kre72]. Among other
things, Kreweras showed that the size of NCn is counted by the combinatorially
ubiquitous Catalan numbers Cn = 1

n+1

(
2n
n

)
and, more specifically, the number of

lattice elements with rank k is the Narayana number Nn,k = 1
n

(
n
k

)(
n

k−1

)
. Since

Nn,k = Nn,n−k, this further says that NCn is a rank-symmetric lattice. In the
fifty years since its definition, the noncrossing partition lattice has made count-
less appearances in algebraic and geometric combinatorics - see the survey articles
[McC06] and [BBG+19] for more information.

Returning to the more general case prompts a natural question: for which subsets
P ⊂ C does the poset NC(P ) have similar properties to NCn? While some existing
work studies the size of NC(P ) in asymptotic and extremal cases (e.g. [SW06]
[RW13]), similarities to NCn seem uncommon in the literature. In our first main
theorem, we introduce a convexity condition on P which guarantees that NC(P )
has the same size as NCn.

We say that a set of points P ⊂ C in general position has Property ∆k if, for
every convex subset A ⊆ P , the convex hull of A contains at most |A| + k − 3
elements of P in its interior.

Theorem A (Theorem 3.4). Let P ⊂ C be a set of n points with Property ∆1.
Then NC(P ) is a rank-symmetric graded lattice, and the number of elements with
rank k is the Narayana number Nn,k. In particular, |NC(P )| = Cn = |NCn|.

It is worth noting that if P contains a point which lies in the convex hull of
the others, then NC(P ) is not isomorphic to NCn. Thus, Theorem A introduces
a large new class of lattices with the same number of elements in each rank as the
noncrossing partition lattice.
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If the conditions on P are weakened to only require Property ∆2, then the
number of noncrossing partitions may increase compared to those in Theorem A.
Nevertheless, some symmetry is preserved.

Theorem B (Theorem 5.4). Let P ⊂ C be a set of n points with Property ∆2.
Then NC(P ) is a rank-symmetric graded lattice.

Some of the techniques used in proving Theorems A and B can be interpreted
in a stronger topological context. Recall that the (unordered) configuration space
of n points in C is the topological space of all n-tuples in Cn with distinct entries,
considered up to permutations of the coordinates. Also, if P barely fails to be in
general position (i.e. there is a single triple of collinear points in P ) but otherwise
satisfies Property ∆k, we say that P satisfies the weak Property ∆k.

Theorem C (Corollary 2.10). Let k ∈ {1, 2}. The set of all configurations which
satisfy the weak Property ∆k forms a connected subspace of the configuration space
of n points in C.

We are unaware of any prior appearances of the space described in Theorem C.
It would be interesting to know the homology of this space for each k and, in
particular, whether it is a classifying space for the n-strand braid group.

The article is structured as follows. In Section 1, we introduce some background
on posets and partitions, along with basic properties of NC(P ). Section 2 concerns
the transformation of configurations with Property ∆k and includes the proof of
Theorem C. We give the proof of Theorem A in Section 3, then introduce some
technical details in Section 4 which help us to prove Theorem B in Section 5.

1. Noncrossing Partitions

To start, we establish some basic definitions and properties for partitions, posets,
and configurations - see [Sta12] for a standard reference. Recall that a partition
expresses a set S as the union of a collection of pairwise disjoint subsets of S (called
blocks). The set of all partitions for a fixed set S forms a partially ordered set under
refinement: one partition lies “below” another in the partial order if each block in
the latter partition can be obtained as a union of blocks in the former. This partially
ordered set is a lattice in the sense that each pair of elements has a unique meet
and a unique join. Let Π(S) denote the lattice of partitions for S; in the standard
case where S = {1, . . . , n}, the associated partition lattice is denoted Πn.

The partition lattice Π(S) is bounded in the sense that it contains a unique

minimum element 0̂ (in which each block is a singleton) and a unique maximum

element 1̂ (in which all of S belongs to the same block). The partition lattice is
also graded : if |S| = n and we let bl(π) denote the number of blocks in a partition
π ∈ Π(S), then the map ρ : Π(S) → N given by ρ(π) = n− bl(π) is a rank function

for this lattice. Note that the minimum 0̂ and maximum 1̂ have ranks 0 and n− 1
respectively. The atoms and coatoms of this lattice are defined to be the elements
of rank 1 and n− 2 respectively.

Our main object of study in this article is a subposet of the partition lattice for
a finite set of points in the complex plane.

Definition 1.1. Fix P ⊂ C with |P | = n. For any A ⊆ P , the convex hull of
A, denoted Conv(A), is the smallest convex subset of C which contains A. Note
that Conv(A) is a convex polygon with up to |A| vertices. A partition of P is
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Figure 1. The lattice of noncrossing partitions for a particular
arrangement of four points in C

noncrossing if the convex hulls of its blocks are pairwise disjoint. The set of all
noncrossing partitions for P forms a subposet of the partition lattice Π(P ), and we
refer to this subposet as NC(P ).

Example 1.2. Let P = {z1, z2, z3, z4} be a set of points in C such that z1, z2, and z3
form the vertices of a triangle which contains z4 in its interior. Then every partition
of P is noncrossing except for {{z1, z2, z3}, {z4}}, so the noncrossing partition lattice
NC(P ) has 14 elements, arranged according to the diagram in Figure 1.

As a poset, the noncrossing partitions of P inherit several useful properties from
the larger partition lattice Π(P ).

Proposition 1.3. If P ⊂ C with |P | = n, then NC(P ) is a bounded graded lattice.

Proof. Since the minimum and maximum elements of Π(P ) are noncrossing, we
know that NC(P ) is bounded. Furthermore, the rank function for Π(P ) descends
to a rank function on the noncrossing partitions of P , so NC(P ) is graded as
well. To show that NC(P ) is a lattice, we need only prove that NC(P ) is a meet-
semilattice (i.e. that each pair of elements in NC(P ) has a unique meet) by a
standard property of finite bounded posets [Sta12, Prop 3.3.1]. Indeed, if π1 and
π2 are partitions in NC(P ), then all refinements of π1 and π2 in the larger partition
lattice Π(P ) are noncrossing as well. In particular, this means that the meet π1∧π2

in Π(P ) is noncrossing and it follows that this partition is also the meet of π1 and
π2 in NC(P ). Therefore, NC(P ) is a meet-semilattice and thus a lattice. □
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Figure 2. The classical noncrossing partition lattice NC4

We close the section with a few important examples and some observations.

Example 1.4. If P ⊂ C with |P | = n such that each point in P lies on the
boundary of Conv(P ) (i.e. P is in convex position), then NC(P ) is isomorphic to
the classical noncrossing partition lattice NCn, initially defined by Kreweras [Kre72]
- see Figure 2. In addition to the properties outlined in Proposition 1.3, Kreweras
showed that the size of NCn is equal to the Catalan number Cn = 1

n+1

(
2n
n

)
and, in

particular, the number of partitions in NCn with k blocks is the Narayana number
Nn,k = 1

n

(
n
k

)(
n

k−1

)
. For more information on the combinatorial significance of these

connections, see [Sta15].

Noting that Nn,k = Nn,n−k for all 1 ≤ k ≤ n, one can see that NCn is a rank-
symmetric lattice. In fact, the classical noncrossing partition lattice is self-dual in
the sense that it admits a bijection α : NCn → NCn with the property that π1 ≤ π2

if and only if α(π2) ≤ α(π1) [SU91]. However, this stronger condition is rarely held
by NC(P ) more generally.

Remark 1.5. Nica and Speicher showed in 1997 that intervals in the noncrossing
partition lattice NCn are isomorphic to products of smaller noncrossing partition
lattices [NS97]. With this in mind, we note that if P is a set of n points of C in
general position and if some point of P lies in the convex hull of the others, then
NC(P ) has an interval which is isomorphic to the lattice described in Example 1.2,
which cannot be expressed as a product of noncrossing partition lattices. Therefore,
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Figure 3. The Boolean lattice Booln−1 arises as the set of non-
crossing partitions for a configuration of n collinear points.

NC(P ) is only isomorphic to NCn if the elements of P form the vertices of a convex
n-gon.

Example 1.6. If P ⊂ C with |P | = n such that all points in P are collinear, then
NC(P ) is isomorphic to the Boolean lattice Booln−1, which is defined as the set
of all subsets of a set with n − 1 elements, partially ordered under inclusion. To
see this, observe that each partition in NC(P ) is determined precisely by choosing
a subset of the n− 1 gaps between the n points; see Figure 3.

When |P | = 4, there are only four possibilities for NC(P ) (up to isomorphism),
and three of them are depicted in the preceding figures. All three (indeed, all four)
possess several useful lattice properties, including rank-symmetry, self-duality, and
a simple counting formula. However, these properties do not always hold for larger
sizes of P .

Example 1.7. If P consists of five points in general position with three points on
the boundary of the convex hull and two points in the interior, then |NC(P )| = 43
(whereas |NCn| = 42), although NC(P ) remains rank-symmetric. Furthermore, if
P consists of six points in general position, arranged so that the three extremal
points form an equilateral triangle and the three interior points form a shrunken
equilateral triangle with the same center, then NC(P ) is not rank-symmetric: it
has 15 atoms (rank 1) and coatoms (rank 4), but 55 elements at rank 2 and 57
elements at rank 3.
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z

Figure 4. From left to right: an arrangement A, the subarrange-
ment Az with the region Rz highlighted, and the subarrangement
Aex of lines between pairs of extremal points. In each image, only
the core of each line has been drawn.

2. Configurations

Before moving on to the main theorems, we introduce some tools for studying
the geometry of planar configurations, by which we mean finite unordered sets of
points in the Euclidean plane. We begin with some helpful terminology, partially
inspired by [ER00]. Throughout this section, let P denote a configuration of n
points in C in general position (i.e. no three points in P are collinear), unless
otherwise specified.

Definition 2.1. Let A ⊆ P and recall that Conv(A) denotes the convex hull of
the points in A. Define the closure A by Conv(A) ∩ P and the interior int(A) to
be int(Conv(A))∩P . We say that A is convex if int(A)∩A is empty. Also, a point
p ∈ P is internal if p ∈ int(P ) and extremal otherwise. We also define a technical
condition: a configuration P in general position satisfies Property ∆k if, for every
convex subset A in P , the interior int(A) contains at most (|A| − 3) + k points.
Equivalently, P has Property ∆k if P is in general position and each subset B ⊆ P

(not necessarily convex) has at most ⌊ |B|−3+k
2 ⌋ internal points. Finally, we say that

P instead has the weak Property ∆k if it satisfies the same convexity criteria, but
has at most one instance of three collinear points.

It is worth noting that Property ∆1 is equivalent to a simpler condition which
is easier to check: for any A ⊆ P with |A| = 3, we have |int(A)| ≤ 1. To see this,
consider that each convex subset of k points in P forms the vertices of a convex
k-gon, and any triangulation of this polygon consists of k−2 triangles; Property ∆1

is equivalent to the requirement that each of those k − 2 triangles has at most one
point of P in its interior. Unfortunately, this does not generalize to Property ∆k

when k > 1.
If P satisfies Property ∆k, then any small perturbation of P will also satisfy

Property ∆k since P is in general position. However, deformations which move a
point in P across the line between two other points in P might not preserve this
property. The main goal of this section is to provide some tools for moving points
in P while preserving Property ∆k. To start, we establish some terminology for
the lines connecting points in P .
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Definition 2.2. Each pair of distinct points in P determines a line in C; let A
denote the arrangement of the

(
n
2

)
lines obtained in this way. If ℓ is the line obtained

from the points z and w in P , then we say that z and w are the endpoints of ℓ and
write V (ℓ) = {z, w}. We also refer to the line segment between z and w as the core
c(ℓ) = Conv(V (ℓ)) of ℓ. More generally, we write V (ℓ1, . . . , ℓk) to mean the 2k-
element set of endpoints belonging to the lines ℓ1, . . . , ℓk and we write c(ℓ1, . . . , ℓk)
to mean the convex hull Conv(V (ℓ1, . . . , ℓk)).

Definition 2.3. For each z in int(P ), let Az denote the subarrangement of A
obtained by deleting the lines which pass through z. Also, define Aex to be the
subarrangement ofA which consists of all lines with two extremal endpoints, i.e. the
intersection of all Az for z ∈ int(P ). We associate two regions to each z ∈ int(P ):
the connected component of C − Az containing z (which we denote Rz) and the
connected component of C−Aex containing z (denoted Rex

z ). Note that each region
is a convex polygon since it is a bounded subset of the plane determined by removing
some number of half-planes. Finally, we say that a line in A is separating if it has
points from int(P ) on either side of it, and a boundary line is one which contains a
boundary edge for the convex hull Conv(P ).

For the sake of clarity, we will typically illustrate the line arrangement A by its
intersection with the convex hull of P - see Figure 4 for an example.

Definition 2.4. A move is a bijection m : P → m(P ) such that m fixes all of P
except some element z, which is instead sent to a point m(z) in the interior of a
region adjacent to Rz. If ℓ is a line in the arrangement A which separates the
regions Rz and Rm(z), then we say that m moves z across ℓ. If both P and m(P )
satisfy Property ∆k, we say that m is a ∆k-move. Finally, note that m induces an
isomorphism m∗ : Π(P ) → Π(m(P )) by replacing z with m(z) in each partition.

It is worth noting that for any z ∈ P , we can replace z with any other point in
the region Rz without changing the isomorphism type of Π(P ), so moves on P can
be described solely by the regions involved.

Definition 2.5. Let z ∈ P . If ℓ is a line in the arrangement A which contains a
side of the region Rz, then we say that ℓ is adjacent to z. This line determines two
open half-planes: H+

z,ℓ, which contains z, and H−
z,ℓ, which does not.

The following lemmas establish two useful cases of ∆k-preserving moves.

Lemma 2.6. If P has Property ∆k and m : P → m(P ) moves z ∈ int(P ) across a
non-separating line in Aex, then m(P ) has Property ∆k as well.

Proof. Let m : P → m(P ) be a move which takes z across a line ℓ in Aex, and let w1

and w2 be the endpoints of ℓ. Suppose for the sake of contradiction that m(P ) does

not satisfy Property ∆k; then there is a subset A ⊆ m(P ) with |int(A)| > ⌊ |A|−3+k
2 ⌋.

Since P satisfies Property ∆k, we know that A must contain m(z) but not z.
First, note that the supposed bound on |int(A)| precludes m(z) from being an

internal point of A. If it were internal, then A would necessarily contain w1 and
w2, and A would therefore be a subset of H+

m(z),ℓ since z ̸∈ A. However, m(z) is the

unique internal point of m(P ) in H+
m(z),ℓ since we assumed ℓ was non-separating in

the initial configuration P , so the inequality would not hold.
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z m(z)

w1

w2

a1

a2

Figure 5. If m : P → m(P ) is a move which takes z across a
non-separating edge between extremal points w1 and w2, and if
the triple {a1, a2,m(z)} (indicated with dashed lines) has more
than one point in its interior, then the quadrilateral {a1, a2, w1, w2}
(indicated with solid lines) has at least three points in its interior.

Thus, m(z) is an extremal point of A. Define B = (A − {m(z)}) ∪ {z, w1, w2};
then |B| ≤ |A| + 2 and |int(B)| ≥ |int(A)| + 1 (since z is an internal point for B
but not A), and we can combine these to find the following chain of inequalities:

|int(B)| ≥ |int(A)|+1 >

⌊
|A| − 3 + k

2

⌋
+1 ≥

⌊
|A| − 3 + k + 2

2

⌋
≥
⌊
|B| − 3 + k

2

⌋
.

Since B is a subset of P , this contradicts our assumption that P has Property ∆k -
see Figure 5 for an example when k = 1. Therefore, m(P ) must satisfy Property ∆k

and we are done. □

Lemma 2.7. If P has Property ∆k and m : P → m(P ) moves z ∈ int(P ) across a
line in Az with at least one internal endpoint, then m(P ) has Property ∆k as well.

Proof. Let ℓ be a line in Az adjacent to z with endpoints w1 and w2, suppose that
w2 is an internal point of P , and let m : P → m(P ) be the move which takes z
across ℓ. As above, we suppose for the sake of contradiction that m(P ) does not

satisfy Property ∆k and can thus find a subset A ⊆ m(P ) with |int(A)| > ⌊ |A|−3+k
2 ⌋

such that A contains m(z) but not z.
Consider the three lines in A for which one endpoint is w1 and the other belongs

to the set {z, w2,m(z)}. Since z, w2, and m(z) are internal points of P and both z
and m(z) are adjacent to ℓ, all three of these lines must pass through the same side
of the polygon Conv(P ). Let a1, a2 ∈ P be the extremal points which determine
this side, where a1 is on the same side of ℓ as z - see Figure 6 for an illustration.

Now, define B = (A − {m(z)}) ∪ {z, w1, w2, a1, a2}. If m(z) ∈ int(A), then A
must contain w1 and w2, and the fact that z /∈ A tells us that A does not contain
any points in the half-plane H+

z,ℓ. Thus, in this case we have that |B| ≤ |A| + 2

and |int(B)| ≥ |int(A)| + 1 (since w2 is internal for B but not A), which provides
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w1

w2

a1

a2

z

m(z)

Figure 6. If w2 is an internal point and m is a move which takes z
across the line containing w1 and w2, then there are extremal points
a1 and a2 such that the convex hull of a1, a2, and w1 (depicted
with dashed lines) has w2, z, and m(z) in its interior.

the same chain of inequalities as described in the proof of Lemma 2.6. Therefore,
P does not satisfy Property ∆k, which is a contradiction.

If m(z) is instead an extremal point of A, then we see that |B| ≤ |A| + 4 and
|int(B)| ≥ |int(A)|+ 2, so we have a similar sequence of inequalities:

|int(B)| ≥ |int(A)|+2 >

⌊
|A| − 3 + k

2

⌋
+2 ≥

⌊
|A| − 3 + k + 4

2

⌋
≥
⌊
|B| − 3 + k

2

⌋
.

This also contradicts our assumption that P satisfies Property ∆k, so we conclude
that m(P ) must satisfy Property ∆k. □

Note that the following lemma supposes only that P has Property ∆2, so in
particular it holds when P satisfies Property ∆1 as well.

Lemma 2.8. If P has Property ∆2, then there is a point z ∈ int(P ) such that at
least one side of the region Rex

z belongs to a non-separating line in Aex.

Proof. Let P be a configuration satisfying Property ∆2 and let D be the convex
hull of the regions Rex

z , where z is an interior point of P . Let ℓ1, . . . , ℓk denote
the lines (not necessarily in A) which contain the k sides of D, arranged so that
they appear in counter-clockwise order. If at least one ℓi contains a side of some
region Rex

z , then ℓi belongs to the arrangement Aex, and it follows that ℓi must be
non-separating since all internal points lie on one side of it.

Suppose for the sake of contradiction that this is not the case. Then we can
fix points z1, . . . , zk ∈ int(P ) such that for each i, the region Rzi intersects the
boundary of D at the point where the lines ℓi and ℓi+1 (evaluated mod k) intersect.
Since neither ℓi nor ℓi+1 are in Aex, it follows that the half-planes H−

zi,ℓi
and

H−
zi,ℓi+1

intersect in an unbounded region which contains an extremal point of P -

see Figure 7 for an illustration.



10 S. COHEN, M. DOUGHERTY, A. HARSH, AND S. MARTIN

Figure 7. This configuration of 15 points has five internal points
for which the corresponding regions have a convex hull (outlined
with dashed blue lines in the upper left image) where no side of
the convex hull contains a side of a region. By extending each side
of the convex hull into a line, each of the five points determines
a cone (shaded red in the upper right image) which contains at
least one extremal point. Selecting one extremal point from each
cone (highlighted red in the bottom image) yields a set of extremal
points which contains the starting internal points and is at most
as numerous, thus violating Property ∆2.

If E is the set of k extremal points obtained in the manner above, then one
can show that the convex hull Conv(E) contains D. However, this means that
z1, . . . , zk lie in the interior of E, which contradicts our assumption that P satisfies
Property ∆2. Therefore, at least one side of D must belong to a non-separating
line in Aex and we are done. □

Putting all of these tools together, we obtain a useful connectivity property.
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Theorem 2.9. Suppose P satisfies Property ∆k, where k ∈ {1, 2}. Then there is
a sequence of ∆k-moves which transforms P into a convex configuration.

Proof. We proceed by induction on the number of internal points for P . If P has no
internal points, then P is already convex and we are done. Now, suppose the theo-
rem holds for configurations with fewer internal points than P and define nsnb(P )
to be the set of non-separating non-boundary lines in Aex; we will prove that the
theorem holds for P as well by a second induction on |nsnb(P )|. If |nsnb(P )| = 0,
then each internal point of P is adjacent to a boundary line, and by Lemma 2.6,
we can bring one of these internal points across a boundary line by a ∆k-move,
which reduces the number of internal points by one and allows us to apply the first
inductive hypothesis.

Next, suppose the claim holds for all configurations Q with |int(Q)| = |int(P )|
and |nsnb(Q)| < |nsnb(P )|. By Lemma 2.8, we know that there is an internal point
z in P such that one side of the region Rex

z is contained in a non-separating line in
Aex. This means that while z may not be adjacent to a non-separating line, there
is a finite sequence of moves across lines with at least one internal endpoint which
takes z to a region which is adjacent to a non-separating line in Aex. Each move
across lines with an internal endpoint preserves Property ∆k by Lemma 2.7, after
which we can perform a ∆k-move across the non-separating line by Lemma 2.6.
This new configuration has fewer non-separating non-boundary lines, so by the
second inductive hypothesis, it can be further transformed via ∆k-moves into a
convex configuration and the proof is complete. □

From a topological perspective, Theorem 2.9 can be interpreted as a statement
about the configuration space of n points in the plane. To do so, recall that the weak
Property ∆k is a slight weakening of Property ∆k which allows for one instance of
three collinear points.

Corollary 2.10 (Theorem C). Let k ∈ {1, 2}. The set of all configurations which
satisfy the weak Property ∆k forms a connected subspace of the configuration space
of n points in C.

Applying a move to a configuration P will certainly affect the noncrossing parti-
tion lattice NC(P ), and possibly even its isomorphism type. To close this section,
we introduce a natural map between the larger partition lattices.

Definition 2.11. Let m : P → m(P ) be a move which brings the point z ∈ P
across the line ℓ in Az and let w1 and w2 be the two points of P on ℓ. The block-
switching map BSm : Π(P ) → Π(m(P )) is defined for each π ∈ Π(P ) as follows:
if w1 and w2 share a block in π and z belongs to a different, non-singleton block,
then define BSm(π) to be the result of removing {w1, w2} and {m(z)} from their
respective blocks in m∗(π) and swapping them; otherwise, define BSm(π) = m∗(π).
See Figure 8 for an illustration. Note that BSm is a rank-preserving bijection, but
not an isomorphism.

3. Property ∆1 and Catalan Numbers

Our strategy for proving Theorem A is to show that if P satisfies Property ∆1,
then applying a ∆1-move to P does not change the size of NC(P ). From here,
applying Theorem 2.9 completes the proof. We begin with a useful lemma and
some terminology, then give the proof of Theorem A.
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z

w1

w2

m(z)

w1

w2

z

w1

w2

m(z)

w1

w2

m∗ m∗
BSm

Figure 8. The block-switching map BSm, compared to the in-
duced map m∗ for a fixed move m. In this example, BSm takes an
element of NC(P ) to an element of NC(m(P )).

Lemma 3.1. Suppose P satisfies Property ∆1 and let z ∈ int(P ). Then Rz = Rex
z .

Proof. We know by definition that Rz and Rex
z are convex polygons with Rz ⊆ Rex

z ,
so we just need to show that each of its sides is a subset of a line in Aex. Suppose
that one of the sides for Rz is a subset of a line ℓ with endpoints u and v, where
v (and possibly u as well) is internal. Then ℓ must not contain any other points
in P (since P is assumed to be in general position), so it must eventually intersect
the boundary of Conv(P ) in some edge between extremal vertices w1 and w2, and
thus v lies within the triangle with vertex set {u,w1, w2}. Since ℓ was assumed to
contain a side of Rz, we know that z must also be contained in the same triangle - see
Figure 9 for an illustration. But this implies that P does not satisfy Property ∆1,
which is a contradiction. □

Remark 3.2. Let P be a configuration satisfying Property ∆1, suppose that z ∈ P
is adjacent to a line ℓ in Aex, and let π be a partition of P . Since P satisfies
Property ∆1, we know by Lemma 3.1 that ℓ contains an edge of the region Rz. In
other words, there are no lines in the arrangement Az which lie between ℓ and z.
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z

u

v

w1

w2

Figure 9. If the region Rz has a side which belongs to a line
through an interior point v, then z and v must both belong to a
common triangle.

This implies that if Bz and Bℓ are the blocks in π containing z and the endpoints of ℓ
respectively, then Conv(Bz) and Conv(Bℓ) are disjoint if and only if Bz∩H−

z,ℓ = ∅
and Bℓ ∩H+

z,ℓ = ∅.

Definition 3.3. Let m : P → m(P ) be a move. We say that π ∈ Π(P ) is pre-m-
noncrossing if π is noncrossing, but its imagem∗(π) ∈ Π(m(P )) is not. Similarly, we
say that µ ∈ Π(m(P )) is post-m-noncrossing if µ is noncrossing, but its preimage
m−1

∗ (µ) ∈ Π(P ) is not. Then NC(m(P )) can be obtained from NC(P ) by the
following procedure: remove partitions which are pre-m-noncrossing, apply m∗ to
all remaining elements, then add in the post-m-noncrossing partitions.

We are now ready to prove the main theorem of this section.

Theorem 3.4 (Theorem A). Let P ⊂ C be a configuration of n points which
satisfies Property ∆1. Then NC(P ) is a rank-symmetric graded lattice, and the
number of elements with rank k is the Narayana number Nn,k. In particular,
|NC(P )| = Cn = |NCn|.

Proof. By Theorem 2.9, we know there is a sequence of ∆1-moves which transforms
P into a convex configuration, for which we know the lattice of noncrossing parti-
tions is isomorphic to NCn. Therefore, we need only show that if m : P → m(P )
is a ∆1-move, then the lattices NC(P ) and NC(m(P )) have the same number of
elements in each rank.

Our strategy is to show that the block-switching map BSm restricts to a rank-
preserving bijection NC(P ) → NC(m(P )). Suppose that m : P → m(P ) is a
∆1-move which brings the point z across the line ℓ in Aex, where the endpoints of
ℓ are w1 and w2, and let m(z) = y.



14 S. COHEN, M. DOUGHERTY, A. HARSH, AND S. MARTIN

Let π be a partition of P . Applying Remark 3.2 and the fact that H−
y,ℓ = H+

z,ℓ

and H+
y,ℓ = H−

z,ℓ, we have the following sequence of equivalences:

π is pre-m-noncrossing ↔ in π: Bz ∩H−
z,ℓ and Bℓ ∩H+

z,ℓ are empty;

either By ∩H−
y,ℓ or Bℓ ∩H+

y,ℓ is nonempty

↔ in BSm(π): Bℓ ∩H−
z,ℓ and By ∩H+

z,ℓ are empty;

either Bℓ ∩H−
y,ℓ or Bz ∩H+

y,ℓ is nonempty

↔ in BSm(π): Bℓ ∩H+
y,ℓ and By ∩H−

y,ℓ are empty;

either Bℓ ∩H+
z,ℓ or Bz ∩H−

z,ℓ is nonempty

↔ BSm(π) is post-m-noncrossing

Thus, the block-switching map BSm induces a rank-preserving bijection between
the pre-m-noncrossing partitions of P and the post-m-noncrossing partitions of
m(P ), and we are done. □

4. Skewers

Our proof of Theorem B follows a similar structure to that of Theorem A, but
the weakening of our hypotheses from Property ∆1 to Property ∆2 means that
Lemma 3.1 no longer holds. That is, it is possible that while some points in P
are adjacent to non-separating lines in A, none of these lines are in Aex. As a
result, we must account for moves which take an interior point across a line with
an interior endpoint, which in turn means we need to understand situations where
a partition block overlaps with the line being moved across. With this in mind, we
use this section to introduce the notion of “skewering” lines in A and explore the
restrictions imposed by Property ∆2. Throughout the rest of this section, let P be
a configuration of n points in C and let A be the corresponding line arrangement.

Definition 4.1. For each pair of distinct lines ℓ1, ℓ2 ∈ A, the intersection ℓ1 ∩ ℓ2
can be classified into one of four different types (without loss of generality):

• if ℓ1 ∩ ℓ2 = ∅, then ℓ1 and ℓ2 are parallel ;
• if ℓ1 ∩ ℓ2 lies in c(ℓ1) ∩ c(ℓ2), then ℓ1 and ℓ2 intersect internally ;
• if ℓ1 ∩ ℓ2 lies in neither c(ℓ1) nor c(ℓ2), then ℓ1 and ℓ2 intersect externally ;
• if ℓ1 ∩ ℓ2 lies in c(ℓ2) but not c(ℓ1), then ℓ1 skewers ℓ2.

As a useful shorthand, we write ℓ1 ⊣ ℓ2 to mean that ℓ1 skewers ℓ2. When this
is the case, note that the convex hull c(ℓ1, ℓ2) contains one of the endpoints of ℓ1
as an internal point - we refer to this as the link vertex for the skewer. Finally, a
skewering sequence is a collection of lines ℓ1, . . . , ℓk in A with ℓ1 ⊣ ℓ2 ⊣ · · · ⊣ ℓk.

Definition 4.2. Suppose that P satisfies Property ∆2. A skewering tree is a subset
T ⊂ A, together with two additional pieces of data - a special element ℓ0 ∈ T called
the initial line and a chosen closed half-plane bounded by ℓ0, which we call the
positive side of ℓ0 - with the following properties:

• no two elements of T intersect internally;
• for all ℓ ∈ T with ℓ ̸= ℓ0, there is a unique line ℓ′ ∈ T which skewers ℓ;
• no element of P is the link vertex for more than one skewer.
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α2

α1

ℓ0

β1

Figure 10. A skewering tree for a configuration of 14 points which
satisfies Property ∆2, but not Property ∆1. The tree consists of
two skewering sequences: ℓ0 ⊣ α1 ⊣ α2 and ℓ0 ⊣ β1. For the sake
of visual clarity, only the cores of the four lines have been drawn.

We can also build a skewering tree inductively as follows: begin with an initial line
ℓ0 ∈ A, select one of the two half-planes bounded by ℓ0 to be the positive side, and
define T = {ℓ0}. Next, either stop here or add a line from A to T which is skewered
by another element of T such that the requirements above remain satisfied. Repeat
this process and stop at any point; the resulting set T is a skewering tree. See
Figure 10 for an example. In either construction, we refer to the non-initial lines in
T which do not skewer any other lines as leaves. Finally, we say that a skewering
tree is maximal if it is not properly contained in any other skewering tree in A.

The following lemma places fairly strong restrictions on the planar structure of
skewering trees in configurations which satisfy Property ∆2.

Lemma 4.3. Suppose P satisfies Property ∆2, let T ⊂ A be a skewering tree, and
let ℓ, ℓ1, and ℓ2 be distinct lines in T such that ℓ is a leaf and ℓ1 ⊣ ℓ2. Then ℓ does
not intersect the convex hull c(ℓ1, ℓ2).

Proof. First, suppose that ℓ is the last element in a skewering sequence which
includes ℓ1 and ℓ2, i.e. that there is a skewering sequence ℓ0 ⊣ α1 ⊣ · · ·αk such that
ℓ = αk, and αi = ℓ1 and αi+1 = ℓ2 for some i. The set V ({ℓ0, α1, . . . , αk}) then
consists of 2(k + 1) points, of which at least k are internal: one for each non-leaf
element in the skewering sequence. If ℓ were to intersect the convex hull c(ℓ1, ℓ2),
then one of the endpoints of ℓ would lie in the interior of the convex hull c(ℓ1, ℓ2, ℓ),
but that would mean that the 2(k+1)-element set described above has k+1 internal
points, which contradicts our assumption that P satisfies Property ∆2.

On the other hand, suppose that ℓ is in a different skewering sequence than ℓ1
and ℓ2. That is, suppose that T contains the sequences ℓ0 ⊣ α1 ⊣ · · · ⊣ αk and
ℓ0 ⊣ β1 ⊣ · · · ⊣ βm, where αk = ℓ, and βi = ℓ1 and βi+1 = ℓ2 for some i. Then
V ({ℓ0, α1, . . . , αk, β1, . . . , βm}) is a set of 2(k + m + 1) points in P , of which at
least k +m are internal. Once again, if ℓ intersected the convex hull c(ℓ1, ℓ2), this
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ℓ1

ℓ2

ℓ

Figure 11. If ℓ intersects the convex hull of ℓ1 and ℓ2 (denoted
in blue), then the set of all endpoints has half of its elements in
the interior (shown here as unfilled red dots).

would imply that our set of 2(k+m+1) points has k+m+1 internal points, which
again would violate Property ∆2. In both cases, we see that ℓ does not intersect
c(ℓ1, ℓ2). □

Note that one may “prune” a skewering tree by iteratively removing leaves, and
the result remains a skewering tree at each step. Thus, Lemma 4.3 further shows
that the non-leaf elements of a skewering tree are similarly constrained.

Definition 4.4. The union of all lines in a skewering tree T forms a subset of
the plane with the structure of an unbounded graph, consisting of vertices, line
segments, rays, and lines (one may equivalently view this as a graph embedding
on the 2-dimensional sphere, viewed as the stereographic projection of the plane);
let ΓT denote the unbounded graph obtained from this by removing any ray which
does not contain the core of its corresponding line in T . We refer to ΓT as the
planar realization of T , observing that ΓT is an acyclic graph, i.e. a tree. Note that
while a pair of rays in ΓT might overlap, Lemma 4.3 implies that no ray in ΓT has
a transverse intersection with a line segment.

Definition 4.5. For each non-initial line ℓ in T , the core c(ℓ) is contained in the
boundary for exactly one region of the complement C− ΓT (since the other side of
ℓ contains the core of the line which skewers it). The cell associated to ℓ, denoted
Cℓ, is the union of the interior of this region together with the line segment or ray
which contains c(ℓ). Note that Cℓ is a convex (possibly unbounded) subset of the
plane which contains exactly one side of its boundary. The initial line ℓ0 bounds
two regions and thus corresponds to two cells: C+

ℓ0
, which contains the core c(ℓ0)

and belongs to the positive side of ℓ0, and C−
ℓ0
, which does not. See Figure 12 for

an illustration. For any cell C±
ℓ , we write V (C±

ℓ ) to mean the intersection of P

with C±
ℓ .

Lemma 4.6. The cells of a skewering tree are pairwise disjoint.
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ℓ0

α1

α2
β1

Figure 12. Cells associated to the skewering tree in Figure 10.
In this case, the positive side of the initial line ℓ0 is chosen to be
the upper-right side; the corresponding cell is shaded orange.

Proof. The interior of a cell for a skewering tree is a connected component of the
complement C − ΓT , so it follows that the interiors of two cells overlap if and
only if the interiors are identical. What remains to be shown is that no connected
component of C− ΓT belongs to the cores of two different lines in T .

First, we consider lines αi and αj which come from the same skewering sequence
α0 ⊣ α1 ⊣ · · · ⊣ αk, where 0 ≤ i < j ≤ k. Note that the union

c(αi, αi+1) ∪ c(αi+1, αi+2) ∪ · · · ∪ c(αj−2, αj−1)

is a connected subset of the plane and by Lemma 4.3, it cannot intersect αj . Thus,
this subset lies on one side of αj (the side which contains the cell Cαi

), while the
cell Cαj lies on the other. Thus, the cells associated to αi and αj are disjoint.

Now, we consider lines αi and βj which come from distinct skewering sequences
α0 ⊣ α1 ⊣ · · · ⊣ αk and β0 ⊣ β1 ⊣ · · · ⊣ βm, where α0 = ℓ0 = β0 and i, j ≥ 1.
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αi

βj

Figure 13. In the complement of the lines αi and βj , the region
which has the cores of αi and βj in its boundary (shaded blue
here) must contain the cores of lines which skewer αi and βj , which
means that the cells Cαi

and Cβj
lie outside the shaded region.

Similar to the previous case, we observe that(
i−1⋃
t=1

c(αt−1, αt)

)
∪

(
j−1⋃
t=1

c(βt−1, βt)

)
is a connected subset of the plane and by Lemma 4.3, it must be wholly contained
in one of the four components of the complement C − (αi ∪ βj). In particular, it
must belong to the unique component which contains the core of αi and the core
of βj in its boundary. Thus, this region of C− (αi ∪ βj) does not contain the cells
for either αi or βj , which means that the two cells are disjoint - see Figure 13 for
an illustration. □

Lemma 4.7. Let P be a configuration of n points which satisfies Property ∆2.
Then the cells of a skewering tree cover the elements of P .

Proof. Let z ∈ P , let T be a skewering tree and let Ω be the connected component
of C− ΓT which contains z. Suppose for the sake of contradiction that Ω does not
belong to a cell of T . This immediately rules out the possibility that Ω touches
only a single line in T , since that line would necessarily be a leaf and thus Ω would
belong to the cell associated to that line. The remaining case to consider is that
that there are distinct lines ℓ1, ℓ2 ∈ T such that

(1) ℓ1 and ℓ2 bound adjacent sides of Ω, and
(2) Ω lies in the unique component of C− (ℓ1 ∪ ℓ2) which has neither c(ℓ1) nor

c(ℓ2) in its boundary.

Notice that this implies that the endpoints of ℓ1, the endpoints of ℓ2, and z form
a 5-element subset of P where ℓi and ℓj each have one (non-link) endpoint in the
interior of the convex hull. Similar to the proof of Lemma 4.6, we consider two
cases according to whether ℓ1 and ℓ2 belong to the same skewering sequence or not.
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0̂T 1̂T

Figure 14. The minimum and maximum elements for the interval
associated to the skewering tree drawn in Figure 10

First, suppose T contains a skewering sequence α0 ⊣ α1 ⊣ · · · ⊣ αk such that
ℓ1 = αi and ℓ2 = αj , where 0 ≤ i < j ≤ k and let A be the set containing both z
and the endpoints of αi, αi+1, . . . , αj . Then |A| = 2(j− i+1)+1 and we know that
j − i points in A are link vertices for skewers involving other lines in A. Together
with the two points mentioned above, we have that A is a set of 2(j − i + 1) + 1
points where j − i+ 2 of them are internal, which contradicts our assumption that
P satisfies Property ∆2.

Next, suppose that T contains skewering sequences α0 ⊣ α1 ⊣ · · · ⊣ αk and
β0 ⊣ β1 ⊣ · · · ⊣ βm such that ℓ1 = αi and ℓ2 = βj for some i, j ≥ 1, and let B be
the set containing z together with the endpoints of ℓ0, α1, . . . , αi, β1, . . . , βj . Then
|B| = 2(i + j + 1) + 1, and at least i + j elements of B are internal due to being
link vertices of skewers in this set. By the same reasoning as in the previous case,
we know that i + j + 2 of the 2i + 2j + 3 points in B are internal, which again
contradicts our assumption that P satisfies Property ∆2.

Since both cases lead to a contradiction of Property ∆2, we conclude that z must
in fact belong to a cell of the skewering tree T , and this completes the proof. □

We now conclude this section by defining a subposet of NC(P ) associated to
each skewering tree.

Definition 4.8. Let P be a configuration of n points satisfying Property ∆2 and
let T be a skewering tree for P . We define the skewering interval NC(P, T ) to
be the subposet of NC(P ) consisting of all partitions π satisfying the following
conditions:

(1) for each ℓ ∈ T , the endpoints of ℓ share a block in π;
(2) endpoints of distinct lines in T belong to distinct blocks in π;
(3) each block in π has a convex hull which lies in a cell of T .

As the name suggests, NC(P, T ) is an interval in NC(P ). Let 0̂T be the partition
in NC(P ) for which the only non-singleton blocks are V (ℓ) for each ℓ ∈ T . Let

1̂T be the partition where two points in P belong to the same block if and only if
they belong to the same cell of T (note that this requires us to choose a positive



20 S. COHEN, M. DOUGHERTY, A. HARSH, AND S. MARTIN

side for ℓ0 before discussing the skewering interval). Then NC(P, T ) is the interval

[0̂T , 1̂T ]. See Figure 14.

We close the section with some features of skewering intervals which will be
useful in the proof of Theorem B. To begin, we provide a product decomposition
for skewering intervals.

Definition 4.9. Let ℓ be a boundary line in the arrangement A corresponding to
P . Define πℓ to be the partition of P in which the two endpoints of ℓ share a block,
while every other block is a singleton. Further, let NCℓ(P ) denote the interval

[πℓ, 1̂] in NC(P ).

Lemma 4.10. Let T be a skewering tree for P . Then the skewering interval
NC(P, T ) is isomorphic to the product∏

ℓ∈T
ℓ ̸=ℓ0

NCℓ(V (Cℓ))

×NCℓ0(V (C+
ℓ0
))×NC(V (C−

ℓ0
)).

Proof. This follows immediately from Definitions 4.8 and 4.9. □

Next, we note that each skewering interval is “centered” in the sense that the
rank of its minimum element is equal to the corank of its maximum.

Definition 4.11. Let π0 and π1 be elements of NC(P ) with π0 ≤ π1. We say
that the interval [π0, π1] is centered if ρ(π0) + ρ(π1) = |P | − 1, or equivalently if
bl(π0) + bl(π1) = |P |+ 1.

Lemma 4.12. Each skewering interval NC(P, T ) is a centered subposet of NC(P ).

Proof. Let T be a skewering tree for P . Then the partition 0̂T has rank |T | and 1̂T
has rank |P | − (|T |+ 1), so the interval [0̂T , 1̂T ] is centered. □

Finally, we examine the ways in which skewering intervals can intersect.

Lemma 4.13. If P has Property ∆2, then distinct maximal skewering trees with
the same initial line and choice of positive side yield disjoint skewering intervals.

Proof. Let T and T ′ be distinct maximal skewering trees and suppose that the
partition π is contained in both NC(P, T ) and NC(P, T ′). In other words, both

0̂T ≤ π ≤ 1̂T and 0̂T ′ ≤ π ≤ 1̂T ′ . Since T and T ′ are distinct and maximal, there
must be lines α, ℓ, and ℓ′ such that α, ℓ ∈ T , α, ℓ′ ∈ T ′, and α skewers both ℓ and
ℓ′. Note that by Lemma 4.3, ℓ and ℓ′ cannot skewer one another, and by definition
of a skewering tree, ℓ and ℓ′ do not intersect internally. Therefore the two lines are
either parallel or have an external intersection.

Let H−
α,ℓ and H−

α,ℓ′ denote the closed half-planes bounded by ℓ and ℓ′ respectively
which do not include the core of α. Since α skewers ℓ, we know that the cell Cℓ

(and therefore the core c(ℓ)) must belong to H−
α,ℓ; the analogous statement holds

for ℓ′. By combining the inequalities above, we see that 0̂T ≤ 1̂T ′ , which means
that the core c(ℓ) must be contained in the cell Cℓ′ , which implies that c(ℓ) belongs

to H−
α,ℓ′ . Similarly, the fact that 0̂T ′ ≤ 1̂T tells us that c(ℓ′) is contained in H−

α,ℓ.

Combining all of the above, we know that the intersection H−
α,ℓ ∩H−

α,ℓ′ includes

both c(ℓ) and c(ℓ′), but not c(α). However, by the same reasoning used in the proof
of Lemma 4.6, this is precisely the region in which the core of α must be placed
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Figure 15. An atom in NC(P ) with the corresponding coatom

for it to skewer both ℓ and ℓ′. Therefore, we have a contradiction, so the skewering
intervals for T and T ′ must be disjoint. □

5. Property ∆2 and Rank Symmetry

We now turn our attention to Theorem B, in which we demonstrate that if P
satisfies Property ∆2, then NC(P ) is rank-symmetric. As a first step, one could
write an explicit bijection between the atoms and coatoms of NC(P ), where P
is an arbitrary configuration of n points. This was previously demonstrated by
Razen and Welzl in the special case where P is in general position [RW13] and is
straightforward to generalize. In short: each atom is determined by a single line
in A, and by slightly rotating this line counterclockwise about the midpoint of its
core, we obtain a line which divides P into two pieces, thus producing a coatom in
NC(P ) - see Figure 15 for an illustration.

One could hypothetically prove Theorem B by extending the map above to a
rank-reversing bijection from NC(P ) to itself, but this seems intractable in general.
Instead, our proof technique is similar to that of Theorem A. First, we require a
technical lemma regarding the interval NCℓ(P ) introduced in Definition 4.9. For
the remainder of this section, let P denote a configuration of n points in C which
satisfies Property ∆2.

Definition 5.1. Let ℓ be a boundary line in the arrangement A corresponding to
P . We say that P satisfies Property ∆1 relative to ℓ if each B ⊆ P with V (ℓ) ⊆ B

has at most ⌊ |B|−2
2 ⌋ internal points.

The motivation for the preceding definition comes from its appearance in certain
skewering trees for configurations which satisfy Property ∆2.

Lemma 5.2. Let T be a skewering tree for P with initial line ℓ0. Suppose that ℓ1
is a line in T with ℓ0 ⊣ ℓ1, and that y is a point in P which lies in the convex hull
c(ℓ0, ℓ1) on the non-positive side of ℓ0. Then V (C+

ℓ0
) satisfies Property ∆1 relative

to ℓ0, and for each ℓ ∈ T with ℓ ̸= ℓ0, V (Cℓ) satisfies Property ∆1 relative to ℓ.

Proof. We prove both claims by contradiction. To start, suppose that V (C+
ℓ0
) does

not satisfy Property ∆1 relative to ℓ0. Then there is a subset B ⊆ V (C+
ℓ0
) which

contains the endpoints of ℓ0 such that B has more than ⌊ |B|−2
2 ⌋ internal points. If
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we define B′ = B ∪ V (ℓ1)∪ {y}, then the internal points of B, together with y and
one endpoint of ℓ0, are all internal points of B′. Therefore, B′ has more than⌊

|B| − 2

2

⌋
+ 2 =

⌊
|B|+ 2

2

⌋
=

⌊
|B′| − 1

2

⌋
internal points, which violates the assumption that P satisfies Property ∆2. Thus
V (C+

ℓ0
) satisfies Property ∆1 relative to ℓ0.

Similarly, let ℓ ∈ T with ℓ ̸= ℓ0 and suppose that there is a subset B ⊆ V (Cℓ)

which contains the endpoints of ℓ such that B has more than ⌊ |B|−2
2 ⌋ internal

points. If ℓ = ℓ1, then we can define B′ = B ∪V (ℓ0)∪{y} and observe by the same

reasoning as above that B′ has more than ⌊ |B′|−1
2 ⌋ internal points, which provokes

a contradiction. Suppose instead that ℓ ̸= ℓ1. Then there is a skewering sequence
α1 ⊣ · · · ⊣ αk ⊣ ℓ such that either ℓ0 ⊣ α1 or ℓ0 ⊣ ℓ1 ⊣ α1. In either case, define

B′ = B ∪ V (ℓ0) ∪ V (ℓ1) ∪ {y} ∪ V (α1) ∪ · · · ∪ V (αk)

and observe that the internal points of B′ include all the internal points of B, as
well as one endpoint of each αi, one endpoint of ℓ0, and y. Therefore, the number
of internal points in B′ is more than⌊

|B| − 2

2

⌋
+ k + 3 =

⌊
|B|+ 2k + 4

2

⌋
=

⌊
|B′| − 1

2

⌋
,

which violates Property ∆2. Thus, V (Cℓ) must have Property ∆1 relative to ℓ. □

Lemma 5.3. Suppose that P satisfies Property ∆1 relative to the boundary line ℓ
and that for each proper subset Q ⊂ P , the poset of noncrossing partitions NC(Q)
is rank-symmetric. Then NCℓ(P ) is rank-symmetric.

Proof. We proceed by induction on the number of internal points of P . First, if
P has no internal points, then since ℓ was assumed to be a boundary line, we can
see that NCℓ(P ) is isomorphic to NCn−1, which is rank-symmetric. Now, suppose
that the claim is true for any configuration with up to k − 1 internal points which
satisfies the lemma’s hypotheses, and let P be a configuration with k internal points
such that for all proper subsets Q ⊂ P , we know that NC(Q) is rank-symmetric.
Let u and v be the endpoints of ℓ, and let P v denote the complement P − {v}.
We will compare the interval [πℓ, 1̂] ⊂ NC(P ) to the noncrossing partition lattice
NC(P v), which we know is rank-symmetric by assumption.

Define the map ϕv : NCℓ(P ) → NC(P v) by removing v from each partition in
the domain and observe that ϕv is always injective, but typically not surjective.
Our goal is to show that NCℓ(P ) is rank-symmetric; since NC(P v) is assumed
to be rank-symmetric and ϕv is injective, it suffices to show that the complement
NC(P v)− ϕv(NCℓ(P )) is a union of centered, disjoint, rank-symmetric intervals.

LetW ⊂ P−{u, v} be the set of all points w with the property that int({u, v, w})
is nonempty and note that since P satisfies Property ∆1 relative to ℓ, we must have
|int({u, v, w})| = 1. Then NC(P v)− ϕv(NCℓ(P )) is the collection of all partitions
σ of P v with a block which contains both u and a point w ∈ W , but not the
unique point in int({u, v, w}). Rephrasing this characterization in the language of
skewering trees, let T be the collection of skewering trees for P v such that the
initial line ℓ0 has endpoints u and w for some w ∈ W and the positive side of ℓ0 is
chosen to be the one which does not include v; then a partition σ ∈ NC(P v) lies in
NC(P v)− ϕv(NCℓ(P )) if and only if it belongs to the skewering interval for some
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skewering tree in T . Together with Lemmas 4.12 and 4.13, this tells us that the
skewering intervals for trees in T form a collection of centered and disjoint intervals
whose union is NC(P v)− ϕv(NCℓ(P )). All that remains is to show that each such
skewering interval is rank-symmetric.

Fix a skewering tree T ∈ T and consider the skewering interval NC(P v, T ). By
Lemma 4.10, we have a poset isomorphism

NC(P v, T ) ∼=

∏
α∈T
α̸=ℓ0

NCα(P
v ∩ Cα)

×NCℓ0(P
v ∩ C+

ℓ0
)×NC(P v ∩ C−

ℓ0
).

By our assumption that every proper subset of P has a rank-symmetric lattice of
noncrossing partitions, we know that NC(P v ∩ C−

ℓ0
) is rank-symmetric. For the

middle term in the product, we claim that the set P v ∩ C+
ℓ0

satisfies Property ∆1

relative to the boundary line ℓ0. To see this, recall that the endpoints of ℓ0 are the
extremal point u and some w ∈ W , and define w′ be the unique point of P which lies
in the interior of Conv({u, v, w}. If there were points x, x′, x′′ ∈ P v∩C+

ℓ0
such that

both x′ and x′′ lie in the convex hull Conv({u,w, x}), then {u, v, w,w′, x, x′, x′′}
would be a set of seven points, at least three of which are internal (w′, x′, and x′′).
This would violate our assumption that P has Property ∆1 relative to ℓ, so it must
be the case that P v −C+

ℓ0
satisfies Property ∆1 relative to ℓ0, and by our inductive

hypothesis, we know that NCℓ0(P
v ∩ C+

ℓ0
) is rank-symmetric.

Generalizing this argument, we now show that P v ∩ Cα satisfies Property ∆1

relative to α for each non-initial line α in T . Let α1 ⊣ · · · ⊣ αm be a skewering
sequence in T such that α1 = ℓ0 and αm = α. If there are points x, x′, x′′ ∈ P v∩Cα

such that x′ and x′′ lie in the triangle formed by x and the endpoints of α, and if
w and w′ are defined as above, then

{x, x′, x′′, w′, v} ∪ V (α1) ∪ · · · ∪ V (αm)

is a set of 2m + 5 points, of which at least m + 2 points must be internal - see
Figure 16 for an illustration. Since this set contains both u and v, this violates
our assumption that P satisfies Property ∆1 relative to ℓ, so we may conclude that
P v∩Cα satisfies Property ∆1 relative to α, as desired. By the inductive hypothesis,
NCα(P

v ∩ Cα) is rank-symmetric.
Finally, we have that NC(P v, T ) is a product of rank-symmetric posets and is

therefore rank-symmetric itself, which completes the proof. □

Theorem 5.4 (Theorem B). Let P ⊂ C be a set of n distinct points which satisfies
Property ∆2. Then NC(P ) is a rank-symmetric graded lattice.

Proof. We proceed by induction on the number of internal points for P . When P
has no internal points, NC(P ) is isomorphic to the classical noncrossing partition
lattice NCn, which is rank-symmetric. Now, suppose that every configuration with
fewer than |int(P )| internal points has a rank-symmetric lattice of noncrossing
partitions; we will show that NC(P ) is rank-symmetric as well. By Theorem 2.9,
there is a sequence of ∆2-moves which transforms P into a convex configuration,
for which the lattice of noncrossing partitions is isomorphic to NCn and thus rank-
symmetric. The only remaining step is to prove that if m : P → m(P ) is a ∆2-move,
then NC(P ) is rank-symmetric if and only if NC(m(P )) is rank-symmetric.
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α1

α2
α3

u v

w

w′

x

x′

x′′

α1

α2
α3

u v

w

w′

x

x′

x′′

Figure 16. If α1 ⊣ α2 ⊣ α3 is a skewering sequence for P and
the points in the cell for α3 do not satisfy Property ∆1 relative
to α3 (illustrated on the left in blue), then there is a set of points
containing u and v (illustrated on right in red) which demonstrate
that P does not satisfy Property ∆1 relative to the line with end-
points u and v.

In the proof of Theorem A, we showed that when P satisfies Property ∆1, the
block-switching map BSm is a rank-preserving bijection between pre-m-noncrossing
partitions of P and post-m-noncrossing partitions of m(P ). If P is only assumed
to satisfy Property ∆2, the block switching map might not be a bijection; there
may be partitions π ∈ NC(P ) such that BSm(π) is not in NC(m(P )), or elements
σ ∈ NC(m(P )) such that BS−1

m (σ) does not lie in NC(P ). To complete the proof,
we must show that these two collections are rank-symmetric subposets of NC(P )
andNC(m(P )) respectively. By symmetry, it suffices to examine the first collection.

Suppose that the move m takes a point z ∈ P across a line ℓ ∈ A with endpoints
e(ℓ) = {w1, w2} and let Fm(P ) denote the noncrossing partitions of P which fail to
be accounted for by the block-switching map BSm; that is,

Fm(P ) = {π ∈ NC(P ) | BSm(π) ̸∈ NC(m(P ))}.

If Fm(P ) is empty, then there is nothing to prove. Otherwise, for each π ∈ Fm(P ),
there are points x, y ∈ P such that y, z ∈ int({w1, w2, x}), and these five points are
divided into three distinct blocks of π (each of which might contain other points)
as follows: x and z belong to one block, w1 and w2 belong to another, and y lies in
a third - see Figure 17. Using this characterization, we will prove that (1) Fm(P )
is a union of skewering intervals, (2) each of these skewering intervals is centered
and rank-symmetric, and (3) intersections of the skewering intervals are centered
and rank-symmetric.

More concretely, let y1, . . . , yk be the points in P such that for each i ∈ {1, . . . , k},
there is some xi ∈ P such that w1, w2, and xi form a triangle with interior points
z and yi (and nothing else, since P satisfies Property ∆2). When there is more
than one choice for xi, we select the unique option where all other possible choices
lie in the half-plane bounded by xi and z which does not contain yi. Then Fm(P )
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z

x

y

w1 w2

Figure 17. For the depicted partition π of P , if m moves z across
the line containing w1 and w2, then BSm(π) is not an element of
NC(m(P )) since it has w1, w2, and x together in a single block
without the interior point y.

consists of all partitions in NC(P ) where there exists an i such that z and xi belong
to the same block, w1 and w2 belong to a different block, and yi belongs to a third
block.

Let ℓi denote the line with endpoints xi and z. Since z is adjacent to the line ℓ, we
know that ℓi must skewer ℓ. The characterization above can thus be rephrased: the
partition π belongs to Fm(P ) if and only if π lies in a skewering interval NC(P, Ti)
for some skewering tree Ti with initial line ℓi such that ℓ ∈ T and yi is on the non-
positive side of ℓi. It is straightforward to see that each such skewering interval is a
subset of Fm(P ), so we may conclude that Fm(P ) is a union of skewering intervals.

Each skewering interval in the union is centered by Lemma 4.12, which implies
that Fm(P ) is itself a centered subposet of NC(P ). By Lemma 4.10, each skewering
interval NC(P, Ti) decomposes into a product of posets; the factor NC(V (C−

ℓi
)) is

rank-symmetric by our inductive hypothesis and terms of the form NCℓ(V (Cℓ)) and
NCℓi(V (C+

ℓi
)) are rank-symmetric by Lemmas 5.2 and 5.3. Since the product of

rank-symmetric posets is itself rank-symmetric, we may conclude that the interval
NC(P, Ti) is rank-symmetric.

We are now at the final step: examining how the skewering intervals which make
up Fm(P ) can intersect. First, note that if Ti and T ′

i are two distinct skewering
trees in the union which both use ℓi as the initial line, we know by Lemma 4.13
that NC(P, Ti) ∩ NC(P, T ′

i ) is empty. Next, consider two skewering trees Ti and
Tj which appear in the union with i ̸= j. The intersection NC(P, Ti) ∩NC(P, Tj)
is nonempty precisely when the cells C+

ℓi
for Ti and C+

ℓj
for Tj have an intersection

which excludes both yi and yj (note that this precludes the possibility of nonempty
triple intersections for skewering intervals). When this is the case, the two skewering

intervals intersect in the interval [0̂Ti∨0̂Tj , 1̂Ti∧1̂Tj ]; this is not a skewering interval,
but it has many of the associated properties. By similar arguments to those given
in Lemma 4.3, Lemma 4.6 and Lemma 4.7, we can see that the minimum element
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z

x1

y1

x2

y2

0̂T2

z

x1

y1

x2

y2

1̂T2

Figure 18. On the left and right, the minimum and maximum
elements for a skewering interval are given. The intersection of
these two intervals is another interval, albeit one which does not
arise from a skewering tree; its minimum and maximum elements
are displayed in the center.

0̂Ti ∨ 0̂Tj consists of an edge for each non-initial line in Ti and Tj , together with the
triangle with vertices yi, yj , and z. This triangle has three cells associated to it:
one containing zi, one containing zj , and one which is the intersection of C+

ℓi
and

C+
ℓj

(thus containing the triangle itself). Each other edge has a well-defined cell

in the same way as a typical skewering tree does. The maximal element 1̂Ti
∧ 1̂Tj

is constructed using these cells in the same manner as for skewering trees - see
Figure 18 for an illustration. Putting this all together, [0̂Ti

∨ 0̂Tj
, 1̂Ti

∧ 1̂Tj
] admits a

decomposition similar to the one described in Lemma 4.10, so by Lemmas 5.2 and
5.3, this interval is centered and rank-symmetric.

In summary, we have shown that Fm(P ) is a union of centered and rank-
symmetric intervals in NC(P ), whose pairwise intersections are themselves cen-
tered and rank-symmetric and whose k-wise intersections are empty when k > 2.
Therefore, Fm(P ) is centered and rank-symmetric, which completes the proof. □
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